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the Killing vector and static four-velociiy are

~1/2
Kt =41, 00,0, F = (] -%E?M—') Ll e ) B (6.19)

-
so the redshilt factor is
v [ _2GH
Y r
{Note the agreement with our calculation of the redshift in the previous chapter.)
From (6.15), the acceleration is

(6.20)

V,r, (6.21)

PO SR (6.22)

The surface gravity is ¥k = Va evaluated at the event horizon r = 2G M, and

GM
Va=——, (6.23)
r2
so the surface gravity of a Schwarzschild black hole is
K A (6.24)
— ; 3,25
4G M

It might seem surprising that the surface gravity decreases as the mass increases,
but a glance at (6.23) reveals what is going on; at fixed radius increasing M acts to
increase the combination Va, but increasing the mass also increases the Schwarz-
schild radius, and that effect wins out. Thus, the surface gravity of a big black
hole is actually weaker than that of a small black hole; this is consistent with an
cxamination of the tidal forces, which are also smaller for bigger black holes.

MASS, CHARGE, AND SPIN

Since we have claimed above that the most general stationary black-hole solution
to general relativity is characterized by mass, charge, and spin, we should consider
how these quantities might be defined in GR. Charge is the easiest 1o consider, so
we start there; more details are found in our discussion of Stokes's theorem in
Appendix E. We'll look specifically at electric charge, although magnetic charge
could be examined in the same way.
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Maxwell's equations relate the electromagnetic field strength tensor £y, (o the
electric current four-vector J),

V, FHY = g8, i6.25)

The charge passing through a spacelike hypersurface £ is given by an integral
over coordinates x° on the hypersurface,

0= —f ::"J'.t.._,f’j;rnp.f,{'
z

i f A5 ST O PP, (6.26)
z

where 3;; is the induced metric, and #* is the unit normal vector, associated with
¥, The minus sign ensures that a positive charge density and a future-pointing
normal vector will give a positive total charge. Stokes’s theorem can then be used
o cxpress the charge as a boundary integral,

v =
Q= —-j d=x v.f},m nyoy FPY, (6.27)
ax

where the bounduary #%, typically a two-sphere at spatial infinity, has metric }fr-"-zJ
and outward-pointing normal vector o, The magnetic charge could be deter-
mined by replacing F#" with the dual tensor = F# — .-I-,&F“""" Foo. Thus, 1o cal-
culate the total charge, we need know only the behavior of the electromagnetic
field at spatial infinity. In Appendix E we do an explicit caleulation for a point
charge in Minkowski space, which vields a predictable result but serves as a good
check that our conventions work out correctly,

We turn now 1o the concept of the total energy (or mass) of an asymptotically
flat spacetime. This s a much trickier notion than that of the charge; for one thing,
energy-momeéntum is a tensor rather than a vector in general relativity, and for
another, the energy-momentum tensor Ty, only describes the properties of matter,
not of the gravitational field, But recall that in Chapter 3 we discussed how we
could nevertheless define a conserved total energy if spacetime were stationary,
with a timelike Killing vector field £, We first construct a current

af = KT, (6.28)
where THY is the energy-momentum tensor, Because this current is divergence-

less (from Killing's equation and conservation of 7). we can find a conserved
energy by integrating over a spacelike surface X,

Eq -—-f dxyn,d, (6.29)
E

Jjust as for the charge. As interesting as this expression is, there are clearly some
inadequacies with it. For example, consider the Schwarzschild metric. 1t has a
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Killing vector, but T#" vanishes everywhere. Is the energy of a Schwarzschild
black hole therefore zero? On both physical and mathematical grounds, there is
reason (o suspect not; there is a singularity, after all, which renders the integral
difficult to evaluate. Furthermore, a Schwarzschild black hole can evolve from a
massive star with a definite nonzero energy, and we might like that enerey o be
conserved. It is worth searching for an alternative definition of energy that hetter
captures our intuitive picture for black hole spacetimes.

Sticking for the moment to spacetimes with a timelike Killing vector KV, con-
sider a new current

Ih = K./, (6.30)

tising Einstein’s eguation, we can equivalently write this as
Ji =8aGK, (T - i1g™). (6.31)

The Ricci tensor is not divergenceless; instead we have the contracted Bianchi
identity,

VR = LV'R. (6.32)

But thiz and Killing's equation suffice 1o guarantee that our new current is con-
served. To see this, we simply compute

Vudg = (VK )R™Y + Ky (V RMY). (6.33)

The first term vanishes because 7Y is symmetric and V, K, is antisymmetric
(from Killing's equation), Using (6.32) we therefore have

Vulh = 1K, V'R =0, (6.34)

which we know vanishes because the directional derivative of R vanishes along a
Killing vector, (3,178).
As before, we can define a conserved energy associated with this current,

Ep =
K= anG

fdjx.ua’?nuig. (6.35)
E

where the normalization is chosen for future convenience, The energy Ep will be
independent of the spacelike hypersurface T, and hence conserved. This notion
of energy has a significant advantage over £y, arising from the fact that Eg can
be rewritten as a surface integral over a two-sphere at spatial infinity. To see this,
recall from (3.177) that any Killing vector satisfies ¥V, Vi, K" = K¥* R, the
current self can thus be written as a total derivative,

IE = H(VEEY), (6.36)
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s0 that
| " . :
BR = 2 o 4 AT T(TAKY), (637)
Note that, from raising indices on Killing's equation, VEK" = —VVKH. We can

therefore again use Stokes's theorem just as we did for electric charge, to write
£ g as an integral at spatial infinity,

I [ :fzx,,r.-yl'z"nﬂc;rl.?"ﬁf'. (6.38)
d

Epw o
R= 4G

This expression is the Komar integral associated with the timelike Killing vector
K*; it can be interpreted as the total energy of a stationary spacetime.

To convince ourselves that we're on the right track, let’s caleulate the Komar
integral for Schwarzschild, with metric (6.18). The normal vectors, normalized to
nan® = —1and 0,6 = +1, have nonzero components

-} - 1!‘2 5 —1."-."
nnz—(]—-QM) i J|=(I—?t:—'ﬁf) ; (6.39)

r

with other components vamishing. We there fore have
nuo, V4K = -9k, (6.40)
The Killing vector is K% = (1,0, 0, 0}, s¢ we can readily calculate
VOK! = g™y, k!

= g% (Hm’f’ + T3 K*)

= Hwi[‘tla{rxu

B (1 zGM) 'GM(I zc;M)

a r rt \ ¥
oM ;

= (641)
2

The metric on the two-sphere at infinity 1s
L [ f = .",-df_}:’. 3 2” 2 LA
¥i dr'de’ = re( + sin® Gdgh” ), (0h.42)

s that

\lf'r},f_fj = ir-E s, ('.‘143}
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Putting it all together. the energy of a Schwarzschild black hole is

. | f i (c;.w)
TR = o 5 —
8 G 12

=M, (6.44)

This is of course the desired result, explaining the normalization chosen in (6.35).

Despite getting the right answer, we should think about what just happened. In
particular, we obtained this energy by integrating the current J; = K, R*" over
a spacelike slice, Anding that the result could be written as an integral at spatial
infinity. But for Schwarzschild, the metric solves the vacoum Einstein equation,
Ry = O it thercfore seems difficult to get a nonzero answer from integrating /5,
just as it did for (6.29). If we think about the structure of the maximally extended
Schwarzschild solution, we realize that we could draw two kinds of spacelike
slices: those that extend through the wormhole to the second asymptotic region,
and those that ¢nd on the singularity. 1T the slice extends through the wormhole,
the other asymptotic region provides another component to 8 E, and thus another
contribution to (6.38); this contribution would exactly cancel, so the total energy
would indeed be zero. 1f the slice intersected the singularity, we wouldn’t know
quite how o deal with it. Nevertheless, in either case it is sensible to treal our
result (6.44) as the correct answer. The point is that, since (6.38) involves coniri-
butions only at spattal infinity, it should be a valid expression for the energy no
matler what happens in the interior. We could even imagine time-dependent be-
havior in the interior; so long as K¥ was asvmprorically a timelike Killing vector,
the Komar energy will be well-defined, We could, for example, consider spheri-
cally symmetric gravitational collapse from an itially static star. Evaluating the
integral (6.35) directly over £ would give a sensible answer for the total mass,
which should not change as the star collapsed o a black hole (we are imagining
spherical symmetry, so that gravitational radiation cannol carry away energy 1o
mfinity ). So the Komar integral (6.38), which would be valid before the collapse,
may be safely interpreted as the energy even after collapse 1o a black hole. Of
course for some purposes we might want to allow for energy loss through gravi-
tational radiation, i which case we need 10 be careful about how we extend our
shice to infinity; one can define a “Bondi mass™ at future null infinity which allows
us 1o keep track of energy loss through radiation,

Another worry about the Komar formula is whether it is really what we should
think of as the “energy.” which is typically the conserved guantity associated with
time translation invariance. The best argument in favor of this interpretation is
simply that Eg is certainly a conserved quantity of some sort, and it agrees with
what we think should be the energy of Schwarzschild (and of a collection of
masses in the Newtonian limit, as you could check), so what else could it be?
Alternatively, one could think about a Hamiltonian formulation of general rela-
tivity, and carefully define the generator of time translations in an asymptotically
flat spacctime, and then identify that with the total energy. This was first done by
Arnowitt, Deser, and Misner, and their result is known as the ADM energy. In an
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asymptotically 1lat spacetime, we can write the metric just a5 we do in perturba-
tion theory,

Buv = NMuv '!'"!f,:u-- (6h.45)
except that here we only ask that the components A, be small at spatial infinity,

not necessarily everywhere. The ADM energy can then be written as an integral
over a two-sphere at spatial infinity, as

| o i
. _ X f s 2 ] ; ¥ L I .
Eapm = 167G de X\ y'ia (iIh i—dh J). (6.46)

where spatial indices are raised with 8 (the spatial metric at infinity). This for-
mula looks coordinate-dependent, but is actually well-defined under our assump-
tions. If ki, 15 time-independent at infinity, it can be verified that the ADM cnergy
and the Komar energy actually agree. This gives us even more confidence that the
Komar integral really represents the energy. However, there is 4 sense in which
the ADM energy is more respectable: for example, the Komar integral can run
into trouble if we have long-range scalar fields nonminimally coupled 1o gravity.
But for our immediate purposes the Komar energy is quite acceptable.

One quality that we would like something called “energy™ 10 have is that it
be positive for any physical configuration; otherwise a zero-encrgy state could
decay into pieces of positive energy and negative energy. The energy conditions
discussed in Chapter 4 give a notion of positive energy Tor matter fields, but we
might worry about a negative gravitational contribution leading to problems. Hap-
pily, in GR we have the positive energy theorem, first proven by Shoen and Yau:

The ADM energy of a nonsingular, asymplotically flat spacetime
obeying Einstein’s equation and the dominant energy condition is
nonnegative. Furthermore, Minkowski is the only such spacetime
with vanishing ADM energy.

If we allow for singularities, there are clearly counterexamples, such as Schwarz-
schild with M < (. However, if a spacetime with a singularity (such as Schwarz-
schild with M = 0) is reached as the evolution of nonsingular initial data, the
theorem will apply. Thus we seem o be safe from negative-cnergy isolated sys-
tems in general relativity.

Finally. we may turn to spin (angular momentum), which is perfectly straight-
forward after our discussion of energy. Imagine that we have a rotational Killing
vector B = dg. In exact analogy with the time-translation case, we can define a
conserved current

; = R,R", (65.47)

which will lead to an expression for the conserved angular momentum J as an
integral over spatial infinity,
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l s f |
_ﬁf dL.l'q"."}":E'!]“iTlt"'uR"" (6.458)
JE

J=

(1t is too bad that *J7 1s used for both the current and the angular momentum, just
as it is too bad that “R” is both the rotational Killing vector and the Ricci tensor.
But there are only so many letters to go around.) Just as with the energy, this
expression will still be valid even if B" 15 only asymptotically a Killing vector,
Mote that the normalization is different than in the energy integral; it could be
Justified, for example, by evaluating the expression for slowly-moving masses
with weak gravitational fields.

CHARGED (REISSNER-NORDSTROM) BLACK HOLES

We turn now to the exact solutions representing electrically charged black holes.
Such solutions are not extremely relevant to realistic astrophvsical situations: in
the real world, a highly-charged black hole would be quickly neutralized by in-
teractions with matter in the vicinity of the hole. But charged holes nevertheless
illustrate a number of important features of more general situations. In this case
the [ull spherical symmetry of the problem is still present; we know therefore that
we can write the metric as

d.,il = _{.,Zr_!'ll‘_f!-dtz + e:{“ﬂ',”urz = f'Esz. ('\‘J-i‘j}

Now, however, we are no longer in vacuum, singe the hole will have a nonzero
electromagnetic field, which in wrn acts as a source of energy-momentum, The
energy-momentum tensor for electromagnetism is given by

Tuv = Fyup Fol — 3800 Fou F™. (6.50)

where Fyy is the electromagnetic lield strength tensor. Since we have spherical
symrmetry, the most general field strength tensor will have components

F” = Jr”--'r}z =¥t

f"u.ju =J§'[r.”5iﬂ|‘j =—F¢|ﬁ. (651}
where f(r.1) and g(r, t) are some functions to be determined by the field equa-
tions, and components not written are zero. ¥, corresponds to a radial electric
field. while Fi, corresponds to a radial magnetic field. For those of you wonder-
ing about the sin#, recall that the thing that should be independent of # and ¢

is the radial component of the magnetic field, 87 = «"'#F, . For a spherically
SYIMEeLric metric,

EIJI—I ‘.I' i _‘1_\_ = (?'LIIJ Hy

-8

is proportional to (sin#) ', so we want a factor of sin# in Fay,.
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The field equations in this case are both Einstein’s equation and Maxwell's
equations:

Kh"-' v’{ -Fl'-"-\' — ﬂ
‘\'—"I| Il I"-L-”‘] = ﬂ fﬁ.ﬂ?}

The twao sets are coupled together, since the electromagnetic field strength ensor
enters Einstein’s equation through the energy-momentum tensor, while the metric
enters explicitly into Maxwell’s equations.

The difficulties are not insurmountable, however, and a procedure similar to
the one we followed Tor the vacuum case leads 1o a solution for the charged case
as well, We will not go through the steps explicitly, but merely quote the final
answer, The solution is known as the Reissner—Nordstrim (RN) metric, and is
given by

ds® = —Adr? + A7 'dr? 4+ rPaQ?, (6.53)
I ]
where
2GM  GLO+ PY
A=1— re (@ 3 . (6.54)
r s

In this expression, M is once again interpreted as the mass of the hole; Q is
the total eleciric charge, and £ 1s the total magnetic charge. 1solated magnetic
charges (monopoles) have never been observed in nature, but that doesn’t stop us
from writing down the metric that they would produce if they did exist.® There are
good theoretical reasons te think that monopoles may exist if forces are “grand
unified” at very high energies, but they must be very heavy and extremely rare,
Of course, a black hole could possibly have magnetic charge even if there aren’t
any monopoles. In fact, the eleciric and magnetic charges enter the metric in the
same way, so we are not introducing any additional complications by keeping P
in our expressions. Conservanives are welcome to set £ = 0 1f they like, The
electromagnetic fields associated with this solution are given by

: Q
-l!'.'u- = F.' _—
r _l"j
Fag £
= = {6.55)
rsiné re

The 1/r® dependence of these fields is just what we are used to in flat space; of
course, here we know that this depends on our precise choice of radial coordinate.

The RN metric has a true curvature singularity at r = 0, as could be checked
by computing the curvature invariant scalar R, RY"7? . The horizon structure,

Sln this chapter we are using units in which there is no factor of 47 in Coloumb's law. To compare
with other chapters, divide each appearance of Q0 or P by 4.
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\\' ADGMr = p? 4+ P
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FIGURE 6.2 The function A(r) = 1 — 2GM/r + G{O? + £2)/r® for the Reissner—

Nordstriim solutions: zeroes indicate the location of an event horizon.

however, is more complicated than in Schwarzschild. In the discussion of event
horizons above, we suggested that g™ = 0 would be a useful diagnostic for locat-
ing event horizons, i1 we had cleverly chosen coordinates so that this condition is
satisfied at some lixed value of . Fortunately the coordinates of (6.53) have this
property, and the event horizon will be located at

2GM G+ PY)

g ri=Alr)=1— —— 0. (6.56)

|

F

This will cecur at

ry =GM % GIM? — G(0? + P2). (6.57)

As shown in Figure 6.2, this might constitute two, one, or zero solutions, depend-
ing on the relative values of GM? and 0% + P2, We therefore consider each case
separately.

Case One: GM* < (P> + P?

In this case the coelficient A 15 always positive (never zero). and the metric is
completely regular in the (1, r, &, @) coordinates all the way down to r = (0. The
coordinate ¢ is always tumelike, and r s always spacelike. But still there is the
singularity at r = 0, which is now a timelike line. Since there is no event horizon,
there is no obstruction 1o an observer traveling to the singularity and returning to
report on what was observed. This is a naked singularity, as discussed earlier. A
careful analysis of the geodesics reveals that the singularity is repulsive—timelike
geodesics never intersect r = {: instead they approach and then reverse course
and move away. (Null geodesics can reach the singularity, as can nongecdesic
timelike curves.)
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FIGURE 6.3 Conformal diagram for Reissner-Nordstrom solution with 07 + P2 >
G M=, There is a naked singularity at the origin,

As r — o0 the solution approaches flat spacetime, and as we have just seen the
causal structure seems normal everywhere. The conformal diagram will therelore
be just like that of Minkowski space, except that now r = () is a singularity, as
shown in Figure 6.3,

The nakedness of the singulanty offends our sense of decency, as well as the
cosmic censorship conjecture. In fact, we should never expect to find a black hole
with GM* < (% + P? as the result of gravitational collapse. Roughly speaking,
this condition states that the total energy of the hole is less than the contribution to
the energy from the electromagnetic fields alone—that is, the mass of the matter
that carried the charge would have had o be negative, This selution is therefore
generally considered 1 be unphysical, Notice also that there are no Cauchy sur-
faces in this spacetime, since tmelike lines can begin and end at the singularty.

Case Two: GME = (F + P2

We expect this situation to apply in realistic gravitational collapse; the energy
in the eleciromagnetic field is less than the total energy. In this case the metric
coefficient Adr) is positive at large r and small r, and negative inside the two
vanishing points rs = GM4/G*M? — G(Q? 4+ P2). The metric has coordinate
singularities at both # and r_: in both cases these could be removed by a change
of coordinates as we did with Schwarzschild.

The surfaces defined by r = r+ are both null, and they are both event hori-
zons. The singularity at r = 0 s a timelike line, not a spacelike surface as in
Schwarzschild. If vou are an observer falling into the black hole from far away,
ro 15 just like 2GM in the Schwarzschild metric: at this radius r switches from
being a spacelike coordinate to a imelike coordinate, and you necessarily move in
the direction of decreasing r. Witnesses oulside the black hole also see the same
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phenomena that they would outside an uncharged hole—the infalling observer is
seen o move more and more slowly, and is increasingly redshifted.

But the inevitable fall from r4 to ever-decreasing radii only lasts until you
reach the null surface r = r_, where r switches back 1o being a spacelike coor-
dinate and the motion in the direction of decreasing r can be arrested, Therefore
you do not have to hit the singularity at r = 0; this is to be expected, since r = 0
is a timelike line (and therefore not necessarily in your future). In fact you can
choose either to continue on to r = 0, or begin to move in the direction of in-
creasing r back through the null surface at r = r_. Then r will once again be a
timelike coordinate, but with reversed orientation; you are forced to move in the
direction of increasing r. You will eventually be spit out past r = r.. once more,
which is like emerging from a white hole into the rest of the universe. From here
you can choose to go back into the black hole—this time, a different hole than the
one you entered in the first place—and repeat the voyage as many times as you
like. This little story corresponds to the conformal diagram in Figure 6.4, which
of course can be derived more rigorously by choosing appropriate coordinates and
analytically extending the Reissner—Nordstrém metric as far as it will go.

Reissner—-MNordstrom:
GM2 = pz + qz

timelike
irajeciories

r = constant
surfaces

FIGURE 6.4 Conformal diagram for Reissner-Nordstrom solution with GM? > Q% +
P2. There are an infinite number of copies of the region outside the black hole.
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How much of this is science, as opposed 10 science fiction? Probably not much.
If you think about the world as seen from an observer inside the black hole who
is about to cross the event horizon at r_, vou notice that the ohserver can look
back in time (o see the entire history of the external (asymprotically fat) universe,
at least as seen from the black hole. But they see this (infinitely long) history
in a finite amount of their proper time—thus, any signal that gets to them as they
approach ro s infinitely blueshified. Therefore it is likely that any nonspherically-
symmetnie perturbation that comes inte an RN black hole will vieleatly disturb
the geometry we have described. 11's hard o say what the actual geometry will
ook like, but there is no very good reason 1o believe that it must contiain an in-
finite number of asvmptotically flat regions connecting (o each other via various
wormholes.®

Case Three: GM® = (* 4 P?

This case is known as the extreme Reissner—Nordstrim solution. On the one hand
the extremal hele is an amusing theoretical toy: this solution is often examined in
studies of the role of black holes in quantum gravity. In supersymmetric theories,
extremal black holes can leave certain symmetries unbroken, which is a consider-
able aid in calculations, On the other hand i1 appears unstable, since adding just a
little bit of matter will bring it 1o Case Two.

The extremal black holes have A(r) = (0 at a single radius, r = GM. This
represents an event horizon, but the r coordinate is never timelike; it becomes
mull at # = G M, but is spacelike on either side. The singularity at v = 0 is a
timelike line, as in the other cases. So for this black hole you can again avoid the
singularity and continue to move to the future to extra copies of the asymptotcally
flat region, but the singularity is always “to the left.” The conformal diagram is
shown in Figure 6.5,

A fascinating property of extremal black holes is that the mass is in some
sense balanced by the charge. More specifically, two extremal holes with same-
sign charges will attract each other gravitationally, but repel each other electro-
magnetically, and it turns oul that these effects precisely cancel. Indeed, we can
find exacr solutions to the coupled Einstein—Maxwell equations representing any
number of such black holes in a stationary configuration. To see this, turn first 10
the Reissner—MNordstriom metric itself, and let's stick with electric charges rather
than magnetic charges, just for simplicity. At extremality, GM? = Q7 and the
metric iakes the form

3

)
5 GCMN 5 GMYN T 3
ds® = — (1 . —) dr* + (I — & ) dr® + r2dQ®. {(6.58)
= r
By defining a shifted radial coordinate
p=r—GCM, (6.59)

FFor some work on this issue, see B Poisson and W Israel, Phys. Rev. D241, 1796 (1990),
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the metric takes the isotropic form
ds? = —H 2(pyde® + H (p)dp? + p2d Q7). (6.60)

where

M

Because dp” + p?d$2* is just the flat metric in three spatial dimensions, we can
write (6.60) equally well as

ds? = —H™HD)d? + HA(E)dx? + dy? + d2?), (6.62)
where H can be written
M

x|

H:I+

{6.63)

In the original r coordinate, the electric field of the extremal solution can be ex-
pressed in terms of a vector potential Ay as
Q

-y = Frr = ."'_‘1 = drAg, {{164.5

where the timelike componem of the vector potential is

o
Ap=——, (6.65)
"
and we imagine the spatial components vanish (having set the magnetic field 1o
zero). In our new p coordinate, and with the extremality condition Q% = G M2,
this becomes

JGM
e 10.66)
p+GM
or equivalently
VGAy=H"=-1. (6.67)

But now let's forget that we know that /f obeys (6.61), and simply plug the
metrie (6.62) and the clectrostatic potential (6.67) into Einstein's equation and
Maxwell's equations, imagining that H is time-independent (iig H = 0) but other-
wise unconstrained. We can straightforwardly show {(see the Exercises) that they
can be simultaneously satistied by any time-independent function A (X) that obeys

VIH =0, (6.68)

where V2 = HE E {if_ + iri__g. This is simply Laplace’s equation, and it is straightfor-
ward o write down all of the solutions that are well-behaved at infinity; they take
the form
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=— (H.69)
a=l X = Xa|
for some set of N spatial points defined by 3;, These points describe the locations
of N extremal RN black holes with masses M, and charges 0, = G M,. This
multi-extremal-black hole merric is undoubtedly one of the most remarkable exact
solutions to Einstein’s equation,

ROTATING (KERR) BLACK HOLES

We could go imo a good deal more detail about the charged solutions, but fet's
instead move on 1o rotating black holes. To find the exact solution for the metgic
in this case 1s much more difficult. since we have given up on spherical symimetry.
Instead we look for solutions with axial symmetry around the axis of rotation that
are also stationary (a timelike Killing vector), Although the Schwarzschild and
Rewssner—Nordstrom solutions were discovered soon after general relativity was
invented, the solution for a rotating black hole was found by Kerr only in 1963,
His result, the Kerr metric, is given by the following mess:

IGM 2GMar sin” ¢
s r)dﬂ' _ SETATSIV P drdgs + dgdr)

ds? = - (I -

ﬂ'.’. pz
pz sin® @
+—dr? + pPde? + — [ir] +ah)? — a? Asin® fﬁ] dg*,
A Iy
| o _ —
(6.70)
where
‘ Alr) =rt = 2GMr +a? (6.71)
and
: i ]
pilr, @) =r"+ a’cos* . (6.72)

The two constants M and a parameterize the possible solutions, To verily that the
mass M s equal to the Komar energy (6.38) is straightforward but tedious, while
@ is the angular momentum per uniy mass,

a=1/M, (6.73)

where J is the Komar angular momentum (6.48). 11 is easy 1o include electric and
magnetic charges (2 and £, simply by replacing 26 Mr with 2GMr — G(Q* +
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£y the result is the Kerr—Newman metric. The associated one-Torm potential
has nonvanishing components

Jr — Pacos# —ar sin2 8+ F (r? + a?)cosf
= (*_; Ag = —Lar su _'T{ ) . (6.74)
e e

All of the essential phenomena persist in the absence of charges, so we will set
= P =0 from now on.

The coordinates (¢, r, @, @) are known as Boyer-Lindquist coordinates, [t is
straightforward 1o check that as a — (0 they reduce to Schwarzschild coordinates,
If we keep a fixed and let M — 0, however, we recover flat spacetime bul not in
ordinary polar coordinates, The metric becomes

{.r‘? + a* cos? i)
= ET

(r?+a?

ds? = —dr® + dr? + (r? +a? cos? @)2de? + (2 -|—uE }sin= f d::!:3.

(6.75)

and we recognize the spatial part of this as flat space i ellipsoidal coordinates,
as shown in Figure 6.6, They are related to Cartesian coordinates in Euclidean
3.space by

¥ =(r*+a*)?sind cosg

]
w=(re+ a*)' P ging sin g

Il

z=rcosh, {6.76)

There are two Killing vectors of the metric (6.70), both of which are manifest;
since the metric coefficients are independent of v and ¢, both K = &, and & = 4,
are Killing vectors. Of course R* expresses the axial symmetry of the solution.
The vector K% 15 nol orthogonal 10 1 = constanl hypersurfaces, and in fact is
not erthogonal o any hypersurfaces at all; hence this metric is stationary, but not

# = constant——
} - ¥ = constan!

- & -

FIGURE 6.6 Ellipscidal coordinates (r, &), vsed i the Kerr metric, ¢ = 005 a two-
dimensional disk: the intersection of r = O with & = 7 /2 is the nng a1 the boundary of this
disk.
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static, This makes sense; the black hole is spinning, so it’s not static, but it is
spinning in cxactly the same way at all times, so it's stationary. Alternatively, the
metric can’t be static because if's not time-reversal invariant, since that would
reverse the angular momentum of the hole.

The Kerr metric also possesses a Killing tensor, These were defined in Chapier
3 as any symmetric (0, n) tensor @, ., satisfying

Vit ety = 0 (6.77)
In the Kerr geometry we can define the (0, 2) tensor

Tpv = 2;:3f¢1.ri.,., - r‘j‘g“,_. (6.78)
In this expression the iwo vectors | and n are given (with indices raised) by

el — (r.‘{ e HE, AL 0, a)

I
— (rz +a%, —4,0, a) . (6.79)
2p*

Both vectors are null and satisly

n

Bly=0, n'ny =0, Fr,=-1 (6.80)

With these definitions, you can check for yourself that &, 1s a Killing tensor.

We have chosen coordinates for Kerr such that the event horizons occur al
those fixed values of » for which g = 0. Since g™ = A/p?, and p* > 0, this
oceurs when

AlF) = —2GMr +a% =0, (6.81)

As in the Reissner-Nordstrim solution, there are three possibilities: GM = a,
GM = a, and GM <= a. The last case features a naked singularity, and the
extremal case GM = a is unstable, just as in Reissner—Nordstrom, Since these
cases are of less physical interest, we will concentrate on GM > a. Then there
are two radii at which A vanishes, given by

re =GM +VG2M2 — a2, (6.82)

Both radii are null surfaces that will turn out (o be event horizons: a side view of a
Kerr black hole is portrayed in Figure 6.7. The analysis of these surfaces proceeds
in close analogy with the Reissner—Nordstrim case; it is straightforward to find
coordinates that extend through the horizons.

Because Kerr is stationary but not static, the event horizons at r4 are not Killing
horizons for the asymptotic tme-translation Killing vector K = d;. The norm of
K# 15 given by

1 x
KFE, = ——(A —a®sin® ), (6.83)
3
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inner event horizon stationary limit surface

outer event horizon

ergosphere

FIGURE 6.7 Horizon structure around the Kerr solution (side view). The event horizons
are null surfaces that demarcate points past which it becomes impossible 1o return 10 a
certain region of space. The stationary limit surface, in contrast, is timelike except where
it is tangent o the event horizon (at the poles); it represents the place past which it is
impossible to be a stationary observer, The ergosphere between the stationary limit surface
and the outer event horizon is a region in which it is possible to enter and leave again, but
not 1o remain stationary.

This does not vanish at the outer event horizon; in fact, at r = ry (Where A = 0),
we have

2
K"K, = % sin?0 > 0. (6.84)

So the Killing vector is already spacelike at the outer horizon, except at the north
and south poles (§# = 0, ) where it is null. The locus of points where K#* K, =0
is of course the stationary limit surface, and is given by

(r—GM)? = G*M*? —a®cos? @, (6.85)
while the outer event horizon is given by
(ry —GM)* =G*M? - a%, (6.86)

There is thus a region between these two surfaces, known as the ergosphere.
Inside the ergosphere, you must move in the direction of the rotation of the black
hole (the ¢ direction); however, you can still move toward or away from the event
horizon (and have no trouble exiting the ergosphere). The ergosphere is evidently
a place where interesting things can happen even before you cross the horizon;
more details on this later.

Before rushing to draw conformal diagrams, we need to understand the nature
of the true curvature singularity; this does not occur at r = 0 in this spacetime,
but rather at p = 0 (where the curvature invariant R, ,, R**#" diverges). Since
p% = r? 4 a’cos? 8 is the sum of two manifestly nonnegative quantities, it can
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only vanish when both quantities are zero, or
r=0 @=-—. (6.87)

This seems like a funny result, but remember that r = 0 is not a point in space,
but a disk; the set of points r = 0, # = x /2 is actually the ring at the edge of this
disk. The rotation has “sofiened” the Schwarzschild singularity, spreading it out
over a ring.

What happens if you go inside the ring? A careful analytic continuation (which
we will not perform) would reveal that you exit to another asymptotically Hat
spacetime, but not an identical copy of the one you came from. The new spacetime
is described by the Kerr metric with r < (1. As a result, A never vanishes and
there are no horizons. The conformal diagram, Figure 6.8, is much like that for
Reissner—MNordstriim, except now you can pass through the singularity. Because
the Kerr metric is not spherically symmetric, the conformal diagram is not quite

FIGURE 6.8 Conformal diagram for the Kerr solution with GZM?2 > a?. As with the
analogous charged solution, there are an infinite number of copies of the region outside the
black hole.
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as faithful as in the previous cases; a single point on the diagram represents fixed
values of 1 and r, and will have a different geometry Tor different values of 6,

Not only do we have the usual strangeness of these distinet asymptotically
flat regions connected 1o ours through the black hole, but the region near the
ring singularity has additional pathologies: closed timelike curves. I you consider
trajectories that wind around in ¢ while keeping # and r constant and r a small
negative value, the line element along such a path is

5 20M
ds® = a* (E -+ — ) dt.b‘j'. (B EE)

r

which is negative for small negative r. Since these paths are closed, they are ob-
viously CTCs. You can therefore meet voursell in the past, with all that entails,

OF course, everything we say about the analytic extension of Kerr 15 subject to
the same caveats we mentioned for Schwarzschild and Reissner—Nordstrim; it is
unlikely that realistic gravitational collapse leads to these bizarre spacetimes. [l
is nevertheless always useful 10 have exact solutions, Furthermore, for the Kerr
metric strange things are happening even if we stay outside the event horizon, to
which we now turn,

We begin by considering more carefully the angular velocity of the hole. Ohb-
viously the conventional definition of angular velocity will have to be modified
somewhat before we can apply it to something as abstract as the metric of space-
time. Let us consider the fate of a photon that 1s emitted in the & direction at some
radius 7 in the equatorial plane (¢ = m/2) of a Kerr black hole. The instant it is
emitted its momentum has no compenents in the r or ¢ direction, and therefore
the condition that the trajectory be null s

ds? =0 = g,di* + gip(dedd + dddt) + ggade®. (6.89)

This can be immediately solved 1o obtain

T e
dd g0 .“(z:m)‘ Bt (6.90)
— e | T T x
di goe ¥ \gps 8a9

If we evaluate this guantity on the stationary limit surface of the Kerr metric, we
have g, = 0, and the two solutions are

ey 7|
—0, d—f = o (6.91)
The nonzero solution has the same sign as a; we interprel this as the photon mov-
ing around the hole in the same direction as the hole’s rotation. The zero solu-
tion means that the photon direcled against the hole’s rotation doesn't move at
all in this coordinate system. Note that we haven't given a full solution 1o the
photon's trajectory, only shown that its instantaneous velocity is zere, This is an
example of a phenomenon known as the “dragging of inertial frames™; it 15 ex-
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plored more in one of the exercises 1o Chapter 7. Massive particles, which must
move more slowly than photons, are necessarily dragged along with the hole's
rotation once they are inside the stationary limit surface. This dragging continues
a5 we approach the outer event horizon at ro; we can define the angular velocity
of the event horizon itsell, £2y, 1o be the minimum angular velocity of a particle
at the horizon, Directly from (6.90) we find that

QH=U@)hu=-;L— (6.92)

dr ri+a’

THE PENROSE PROCESS AND BLACK-HOLE THERMODYNAMICS

Black hole thermodynamics is one of the most fascinating and mysterious subjects
in general relativity, To gel there, however, let us begin with something appar-
ently very straightforward: motion along geodesics in the Kerr metric. We know
that such a discussion will be simplihed by considering the conserved quantities
associated with the Killing vectors K = i and R = dg. For the purposes at hand
we can restrict our attention to massive particles, for which we can work with the
four-mormentun

edxkt
Pt = m== (6.93)
dr
where m is the rest mass of the particle. Then we can take as our two conserved
guantities the aciual energy and angular momentum of the partcle,

20 MY di 2mGMar 'l
E-:—K,,p“:m(]——,J)f—+—jL.,—:sin3HiE (6.44)
P dt o dr
and
; Fa niye 2 arnd
L= Ryp" = _Em(.-f-i’r:r Sin o u’_r i mirs +a-) —‘mﬁu st o2 g ﬂ
fils dr ik

(6.93)

These differ from the definitions for the conserved quantities used in the last chap-
ter, where £ and L were taken to be the energy and angular momenium per unit
miass. They are conserved cither way. of course.

The minus sign in the definition of £ is there because at infinity both £ and
p*oare timelike, so their inner product is negative, bul we want the energy 1o be
positive. Inside the ergosphere, however, K# becomes spacelike; we can therefore
imagine particles for which

E=—K,p* <0 (6.96)
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The extent to which this bothers us is ameliorated somewhat by the realization
that all particles must have positive energies if they are outside the stationary
limit surface; therefore a particle inside the ergosphere with negative energy must
either remain in the ergosphere, or be accelerated until its energy is positive if it
is lo escape.

Still, this realization leads to a way to extract energy from a rotating black
hole; the method is known as the Penrose process. The idea is simple; starting
from outside the ergosphere, you arm yourself with a large rock and leap toward
the black hole. If we call the four-momentum of the (you + rock) system p®@#,
then the energy E© = —k, p'# is certainly positive, and conserved as you
move along your geodesic. Once you enter the ergosphere, you hurl the rock with
all your might, in a very specific way. If we call your momentum p'"# and that of
the rock p™@#, then at the instant you throw it we have conservation of momentum
just as in special relativity:

pw)u F= ptl}u 4 p{ZJu_ (6.97)

Contracting with the Killing vector K, gives
E{D} S Eﬂ}+ E{?l_ {6.98)
But, if we imagine that you are arbitrarily strong (and accurate), you can arrange
your throw such that E‘*) < 0, as per (6.96). Furthermore, Penrose was able
to show that you can arrange the initial trajectory and the throw as shown in

Figure 6.9, such that afterward you follow a geodesic trajectory back outside the
stationary limit surface into the external universe. Since your energy is conserved

{top view)

stationary limit surface

FIGURE 6.9 The Penrose process (top view). An ohject falls toward a Kerr black hole
and splits in two while in the ergosphere (within the stationary limit surface, but outside the
outer event horizon). One piece falls into the horizon with a negative energy E'?), while
the other escapes to infinity with a larger energy than that of the original infalling object.
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along the way, at the end we will have
B g0, (6.99)

Thus, you have emerged with more energy than you entered with,

There is no such thing as a free lunch; the energy you gained came from some-
where, and that somewhere 15 the black hole. In fact, the Penrose process extracts
energy from the rotating black hole by decreasing its angular momentum; you
have to throw the rock against the hole’s rotation to get the trick o work. To see
this more precisely. recall that we claimed earlier in this chapter that any event
horizon in a stationary spacetime would be a Killing horizon for some Killing
vector. For Kerr this is a lincar combination of the time-translation and rotational
Killing vectors,

¥H = K" + QuR", (6,100)

where £y is precisely the angular velocity of the horizon as defined in (6.92).
Using K = o, and R = g, 1t 15 swraightforward 1o verify that y* becomes null
at the outer event horizon. The statement that the particle with momentum p'®#
crosses the event horizon “moving forward in time” is simply

PPy, < 0. (6.101)

Plugging in the definitions of £ and L, we see that this condition is cquivalent to

. Ef:.'l
L' e —,
Qn

(6.102)
Since we have arranged EY w be negative, and @y positive, we see that the
particle must have a negative angular momentuwm—it is moving against the hole’s
rotation. Once you have escaped the ergosphere and the rock has fallen inside the
event horizon, the mass and angular momentum of the hole are what they used 1o
be plus the negative contributions of the rock:

M =ED
8J =L@, (6.103)

where J = Ma is the angular momentum of the black hole. Then (6.102) becomes
a limit on how much vou can decrease the angular momentum:

i gl (6.104)

2y

If we exactly reach this limit, as the rock we throw in becomes more and more
null, we have the “ideal” process, in which J = éM/ Q.

We will now use these ideas to verily that, although you can use the Penrose

process to extract energy from the black hole (thereby decreasing M), you cannot
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violate the area theorem: The area of the event horizon is nondecreasing. Although
the muss decreases, the angular momentum must also decrease, in a combination
which only allows the area to increase. To see this, let’s calculate the area of the
outer event horizon, which is located at

r= GM++JGIME - a2, (6.105)

The induced metric 3; on the horizon (where § and j run over {#, ¢}) can be
found straightforwardly by setting r = ry (50 A = 0 dt = Dand dr = 0 in
{6.70):

yijde'dy) = ds*(dt = 0,dr =0,r = ry)
(r? 4 a*)*sin* @

rl +alcoste

= [ri +- azmsj E'!]li!?l + {
e

} dg*. (6.106)

The horizon area is then the integral of the induced volume elemen,

A= f Jyldode. (6.107)
The determinant is
Iyl = (r2 +a®)sin® 4, (6.108)
s0 the horizon area is simply
A =4rrfr2.r+ulj. (6,100

T show that the area doesn 't decrease, it1s convenient to work instead in terms
of the irreducible mass of the black hole. defined by

A
T
Me = tonc2
— 4{_}(1'3 J—UE}
=2
I ] ! ngd -
== M*+ -,.,-'M - (Ma/G)
| S T R
=§(M +1|,-r.’1-'f'i—ﬂ.f,.-"ﬂ}'). (6.110)

We can differentiate to obtain, after a bit of work, how M, is affected by changes
in the mass or angular momentum,

i
— L __(@5'eM -5, (6.111)

AM: = e =
4G MV GIME — a°
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Then our limit (6.104) becomes
dMyy > 0. (6.112)

The wrreducible mass can never be reduced; hence the name. It follows that the
maximum amount of energy we can extract from a black hole before we slow its
rotation to Zero 15

—_— 12
M-—M,=M- t—_<.M2+\xF4W4—iJ,JG]2) . (6.113)
V2
The result of this complete extraction 15 a Schwarzschild black hole of mass M.
It turns out that the best we can do is to start with an extreme Kerr black hole;
then we can get out approximately 29% of its total energy.

The irreducibility of M, leads immediately to the fact that the area A can
never deerease, From (6.1100 and (6.111) we have

7]

SA =87G _(6M — QudJ), (6.114)

e————
Quv G M? —a?
which can be recast as
K
b A ]

M =

SA 4 QublJ, (6.115)

where we have introduced

- VGIM? — gt
IGM(GM +VGM: —a%)

The quantity & is of course just the surface gravity of the Kerr solution, as you
could verify by plugging (6.100) into (6.9).

Equations like (6.115) first started people thinking about a correspondence be-
tween black holes and thermodynamics. Consider the first law of thermodynam-
ics,

(6.116)

dE =TdS - pdv, (6.117)

where T is the temperature, 5 1s the entropy, p is the pressure, and Vs the vol-
ume, 0 the pd V term represents work we do to the system: [t is natural to think
of the term QudJ in (6.115) as work that we do on the black hole by throwing
rocks into it Then the correspondence begins 1o take shape if we think of 1den-
tifying the thermodynamic quantities cnergy, entropy, and temperature with the
black-hele mass, area, and surface gravity:

E < M
5 = AAG
T2, (6.118)
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(Remember we are using units in which i = ¢ = &k = 1.) In the context of classi-
cal general relativity the analogy is essentially perfect, with cach law of thermo-
dynamics corresponding to a law of black hole mechanics. A system in thermal
equilibrium will have setled 10 a stationary state, corresponding to a stationary
black hole. The zeroth law of thermodynamics states that in thermal equilibrium
the temperature 15 constant throughout the system: the analogous statement for
black heles is that stationary black holes have constant surface gravity on the en-
tire horizon, This will be true, at least under the same reasonable assumptions
under which the event horizon 1s a Killing honizon. As we have seen, the first law
(6.117) 15 equivalent (o (6.115), The second law, that entropy never decreases,
is simply the statement that the area of the horizon never decreases, Finally, the
usual statement of the third law is that it is impossible to achieve T = 0 in any
physical process. or that the entropy must go to zero as the temperature gocs (o
zero. For black holes this doesn't quite work: i1 turns out that & = 0 corresponds
1o extremal black holes, which don’t necessarily have a vanishing arca. But the
thermodynamic third law doesn’t really work either, in the sense thal there are
ordinary physical systems that vielate it; the third law applies (o some stluations
but is not truly fundamental,

We have cheated a little in proposing the correspondence (6.118); you will
notice that by equating Td § with kd A /87 G we do not know how 1o separately
normalize 5/A or T/« only their combination. As we will discuss in Chapter 9,
however, Hawking showed that guantum fields in a black-hole background allow
the hole to radiate at a temperature T = /27, Once this is known, we can
interpret A/4G as an actual entropy of the black hole. Bekenstein has proposed
a generalized second law, that the combined entropy of matter and black holes
never decreases,

5(S+i_)z[}. (6.119)
: 4G :
The generalized second law can actually be proven under a variety of assumptions,
Usually, however, we like o associate the entropy of a system with the logarithm
of the number of accessible quantum states. There is therelore some tension be-
tween this concept and the no-hair theorem, which indicates that there are very
few possible states for a black hole of fixed charge, mass, and spin (only one, in
fact). It seems likely that this behavior is an indication of a profound feature of
the interaction between quantum mechanics and gravitation,

EXERCISES
1. Show that the coupled Einstein-Maxwell equations can be simultaneously solved by the
metric (6.62) and the clectrostatic potential (6.67)if H{T) obeys Laplace's equation,
VEH =0, (6.120)

2. Consider the orbits of massless panticles, with affine parameter A, in the equatorial plane
of a Kerr black hole,
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(a) Show thal

dry?  x?

(—) = —(E—= LWLir)(E—=LW_(r)), (6.121)

b o
where £2 = (rf + azjz —a%Ar) sin”#, £ and L are the conserved engrgy and
angular momentum, and you have 1o find expressions for Wy (r).

(b} Using this result, and assuming that £2 =  everywhere, show that the orbit of a
photon in the equaterial plane cannot have 4 twming point inside the outer event
horizon r4 . This means that ingoing light rays cannot escape once they cross ra,
so 1t really is an evemt honzon,

3. Inthe presence of an electromagnetic field, a particle of charge ¢ and mass m obeys
1% o H dxP dx® @ i
B Y, o Pt s T 8 (6.122)
dr= dr dr m dr

Imagine that such a particle 1s moving in the field of a Reissner-Nordstrém black hole
with charge {0 and mass M.

{a) Show that the energy

3G 2 )
Ez,,,(|_.-":;"’ +.‘l‘§.)£’i-_‘_9 (6.123)
=

is conserved,
(b Will a Penrose-type process work for # charged black hole? What is the change in
the black hole mass, §M, for the maximum physical process?

4. Consider de Siner space in static coondinates:

ds® = —(l - ﬂrl)dtl -

2
‘”,‘ -+ 2402,
1 = qre
This space has a Killing vector 4; that is timelike near r = 0 and null on a Killing hori-
#on, Locate the radial position of the Killing honzon, ri. What is the surface gravity, «.
of the horizon? Consider the Euclidean signature version of de Siter space obtained by
making the replacement ¢+ — i1, Show that a coordinate transformation can be made to
make the Buclidean metric regular at the horizon, so long us 1 is made periodic.

3

5. What is the magnetic field seen by an cbserver orbiting a Riessner-Nordsiriim black
hole of electric charge @ and mass M 10 a ¢ircular orbit with circumference 27 RY

6. Coensider a Kerr bluck hole with an accretion disk of negligible mass in the equatorial
plane, Assume that partieles in the disk follow geodesics (that is, ignore any pressure
support), Now suppose the disk contains some iron atoms that are being excited by a
source of radistion, When the iron atoms de-cxecite they emit radiation with a known
frequency vy, as measured in their rest frame. Suppose we detect this radiation far from
the black hole {we also lie in the equatorial plane). What is the observed frequency of
photons emitted from either edge of the disk, and from the center of the disk? Consider
cases where the disk and the black hole are rotating in the sume and opposite directions.
Can we use these measurements 1o determine the mass and angular momentum of the
black hole?
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When we first derived Einstein’s equation, we checked that we were on the right
track by censidering the Newtomian limit. We took this to mean not only that
the gravitational ficld was weak, but also that it was static (no time derivatives),
and that wst particles were moving slowly. The weak-field limin described in this
chapter is less restrictive, assuming that the field is still weak but it can vary with
time, and without any restrictions on the motion of 1est particles, This will allow
us 1o discuss phenomena that are absent or ambiguous in the Newtonian theory,
such as gravitational radiation (where the field varies with time) and the deflection
of light (which involves fast-moving particles).

The weakness of the gravitational field is once again expressed as our ability
to decompose the metric into the lat Minkowski mewic plus a small perturbation,

Luv = Mup + .l'r,“. [fpen] < 1. (7:1)

We will restrict ourselves to coordinates in which 7, takes its canonical form,
Nav = diag(—1, +1, +1, ++1). The assumption that hy, is small allows us to
ignore anything that is higher than first order in this guantity, from which we
immediate]ly obtain

g =gt =t (7.2)

where R*" = 3#Pn" h .. As before, we can raise and lower indices using 5"
and g, since the corrections would be of higher order in the perturbation. In
fact, we can think of the linearized version of general relativity (where effects of
higher than first order in b, are neglected) as describing a theory of a symmet-
ric tensor field Ay, propagating on a flat background spacetime. This theory is
Lorentz invariant in the sense of special relativity; under a Lorentz transformation
xH = 3\.#4'“ x*, the flat metric n,, is invariant, while the perturbation transforms
as

JT.“"l-" = -I"I-ru.ﬁ Eﬂ!-lll'. "lf||r|." i?'l{.]
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Note that we could have considered small perturbations about some other back-

ground spacetime besides Minkowski space. In that case the metrie would have
5 ({11 . 3

been written gy = g5 + My, and we would have derived a theory of a symmet-

ric tensor propagating on the curved space with metric g}m. Such an approach is

necessary, for example, in cosmology.

We want to find the equations of motion obeved by the perturbations Ay,
which come by examining Einstein’s equation 1o first order. We begin with the
Christoffel symbols, which are given by

r}r:r . 'Ijﬁj”'w;e."‘v.l + dugru — i 8uv)
= P (@uhs + Bohyy — Bhpy). (7.4)
Since the connection coefficients are first-order quantities, the only contribution
to the Riemann tensor will come from the derivatives of the I7's, not the I'? terms.
Lowering an index for convenience, we obtain
R;J vpa = ﬁ',rl.i.a,rr r:g o ?F,uif.ifr r:-‘p
= E{dpiﬂuh#ﬁ 4= iy "thl'p — ity I'JP-JIM, - ’j,.'i‘iﬁhl.'r.' ¥. {(7.5)
The Ricei tensor comes from contracting over o and o, giving

Ruv = 3808007 + 85 8,07y — By doh — Thyy), (7.6)

which is manifestly symmetric in g and v, In this expression we have defined the
trace of the perturbation as & = "l = & .. and the d' Alembertian is simply
the one from flat space, | = —i7 + 87 + 2 4 8%, Contracting again to obtain the
Ricei scalar yields

R = d,d,h"" — Oh. (1.7
Putting it all together we obtain the Einstein tensor:
Guy = Ryw — %F},”-R
= (e Ay + B 0,h" — B, oh — Ohyy — 0y B8 + 0, Oh).
(7.8)

Consistent with our interpretation of the linearized theory as one describing a
symmetric tensor on a flat background, the linearized Einstein tensor (7.%) can be
derived by varying the following Lagrangian with respect to f

L= %[[H,,h*”'h{ih-h] — (8, k" Y k" o) + %q‘“'{ﬁ#h’m Wyt o)
— 0" (@) (Buhy]. (7:9)

You are asked o verify the appropriateness of the Lagrangian in the exercises.
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The linearized field equation is of course G 5, = 87 G Ty, where G, is given
by (7.8) and T}, is the energy-momentum tensor, calculated to zeroth order in
hyy. We do not include higher-order corrections to the energy-momentum ten-
sor because the amount of energy and momentum must itself be small for the
weak-field limit to apply. In other words, the lowest nonvanishing order in 7,
is automatically of the same order of magnitude as the perturbation. Notice that
the conservation law to lowest order is simply d, T#" = 0. We will often be con-
cerned with the vacuum equation, which as usual is just R, = 0, where Ry, is
given by (7.6).

With the linearized field equation in hand, we are almost prepared to set about
solving it. First, however, we should deal with the thorny issue of gauge invari-
ance. This issue arises because the demand that g, = 1y, + A, does not com-
pletely specify the coordinate system on spacetime; there may be other coordinate
systems in which the metric can still be written as the Minkowski metric plus a
small perturbation, but the perturbation will be different. Thus, the decomposition
of the metric into a flat background plus a perturbation is not unique. To examine
this issue, we will draw upon ideas about diffeomorphisms discussed in Appen-
dices A and B; readers who have not yet read those sections can skip to equation
(7.14) and the two paragraphs following, which contain the essential ideas.

Let’s think about gauge invariance from a highbrow point of view. The no-
tion that the linearized theory can be thought of as one governing the behavior
of tensor fields on a fat background can be formalized in terms of a background
spacetitne Mp, a physical spacetime Mp, and a diffeomorphism ¢ : My — M.
As manifolds My and M, are the same (since they are diffeomorphic), but we
imagine that they possess some different tensor fields; on My we have defined
the flat Minkowski metric 1y, while on M, we have some metric gog that obeys
Einstein’s equation. (We imagine that M is equipped with coordinates x* and
M, is equipped with coordinates y“, although these will not play a prominent
role.) The diffeomorphism ¢ allows us to move tensors back and forth between
the background and physical spacetimes, as in Figure 7.1. Since we would like to
construct our linearized theory as one taking place on the flat background space-
time, we are interested in the pullback (¢*g)uy of the physical metric. We can
define the perturbation as the difference between the pulled-back physical metric

FIGURE 7.1 A diffeomorphism relating the background spacetime M}y, (with flat metric
Huv) 1o the physical spacetime Mp.
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FIGURE 7.2 A one-parameter family of diffeomorphisms e, generated by the vector
field £ on the backeround spacetime M.

and the flat one:

h;n.l = (Rﬁ‘gj,ull = Nuv-. (7.10)

From this definition, there is no reason for the components of hiy, 1© be small;
however, if the gravitational fields on M, are weak, then for some diffeomor-
phisms ¢ we will have |h,,| < 1. We therefore limit our attention only to those
diffeomorphisms for which this is true. Then the fact that g obeys Einstein's
equation on the physical spacetime means that h,, will obey the linearized equa-
tion on the background spacetime (since ¢, as a diffeomorphism, can be used to
pull back Einstein’s equation themselves).

In this language, the issue of gauge invariance is simply that there are a large
number of permissible diffeomorphisms between My and M, (where “permis-
sible” means that the perturbation is small). Consider a vector field £#(x) on the
background spacetime. This vector field generates a one-parameter family of dif-
feomorphisms v, : My — Mj, as shown in Figure 7.2. For € sufficiently small,
if ¢ is a diffeomorphism for which the perturbation defined by (7.10) is small,
then so will (¢ o ) be, although the perturbation will have a different value.
Specifically, we can define a family of perturbations parameterized by e:

h;:ﬂ = [(¢ o ¥e) luy — Muw
= HE':((#'SHW = Nuu. {?l 1)

The second equality is based on the fact that the pullback under a composition
is given by the composition of the pullbacks in the opposite order, which follows
from the fact that the pullback itself moves things in the opposite direction from
the original map. Plugging in the relation (7.1(}), we find

h;{fj = ﬂf:th + 9y — N
=w:{huvj+¢’:[ﬂpv}_ﬂyll- {7.12)

since the pullback of the sum of two tensors is the sum of the pullbacks, Now we
use our assumption that € is small; in this case ¥} (h,,) will be equal to ki, to
lowest order, while the other two terms give us a Lie derivative:
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In Appendix B we show that the Lie derivative of the metric along a vector field
ks Legye = 2V, &, In the current context the background metric is flat, and
covariant derivatives become partial derivatives; we therefore have

B = hy + 26860 | (7.14)
|

nv

This formula represents the change of the metric perturbation under an infinites-
imal diffeomorphism along the vector field €57 we will call this a gauge trans-
formation in linearized theory.

The diffeomorphisms o, provide a different representation of the same phys-
ical situation, while maintaining our requirement that the perturbation be small,
Thercfore, the result (7,12) tells us what kind of metric perturbations denote phys-
ically equivalent spacetimes—those related 1o each other by 2ed, &, for some
vector £, The invariance of our theory under such transformations is analogous
to traditional gauge invariance of electromagnetism under A4, — A, + d,4.
i The analogy is different from another analogy we draw with electromagnetism
in Appendix J, relating local Lorentz transformations in the orthonormal-frame
formalism to changes of basis in an internal veetor bundle.) In electromagnetism
the invariance comes about because the field strength F,, = 8, Ay — .4, is left
unchanged by gauge transformations; similarly, we find that the transformation
(7.14) changes the linearized Riemann tensor by

"S':R,[t vpa = __l‘_{lef”'l";jﬂ ‘EC‘I + ”p E]L'Hcsén i Ha“ri ':-i'L'E;I + |:J'ra ’Ij;eﬂ,nsr
— gty Ep — 0o Bubpy — Hadudute — dpdidady)

=0. (7.15)

Our abstract derivation of the appropriate gauge transformation for the metric per-
turbation is verified by the fact that it leaves the curvature (and hence the physical
spacetime) unchanged.

Gauge invariance can also be understood from the slightly more lowbrow
but considerably more direct route of infinitesimal coordinate transformations,
Our diffeomorphism v, can be thought of as changing coordinates from x# 10
ot — &% (The minus sign, which is unconventional, comes from the fact that
the “new’” metric is pulled back from a small distance forward aleng the integral
curves, which is equivalent to replacing the coordinates by those o small distance
backward along the curves.) Following through the usual rules for transform-
ing tensors under coordinate transformations, you can derive precisely (7.14)—
although you have o cheat somewhat by equating components of tensors in two
different coordinate systems.
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DEGREES OF FREEDOM

With the expression (7.8) for the linearized Einstein tensor, and the expression
i7.14} for the effect of gauge transformations, we could immediately set about
choosing a gauge and solving Einslein's equation, However, we can accumu-
late some additional physical insight by first choosing a fixed inertial coordinate
system in the Minkowsk background spacetime, and decomposing the compo-
nents of the metric perturbation according (o their transformation properties un-
der spatial rotations. You might worry that such a decomposition is contrary to the
coordinate-independent spirit of general relativity, but it is really no different than
decomposing the electromagnetic field strength tensor into electric and magnetic
fields. Even though both E and B are components of a (0, 2) tensor, it is neverthe-
less sometimes convenient o assume the role of some fixed observer and think of
them as three-vectors.'

The metric perturbation is a (0. 2) tensor, but symmetric rather than antisym-
metric. Under spatial rotations, the (0 component is a scalar, the (F components
{equal io the {0} components) form a three-vector, and the {j components form
a two-index symmetnic spatial tensor, This spatial tensor can be further decom-
posed into a trace and a trace-free part. {In group theory language, we are looking
for “irreducible representations” of the rotation group. In other words, we decom-
pose the tensor into individual pieces, which transform only into themselves under
spatial rotations. ) We therefore write &, as

hop = —29
.Iil'u,. = uy
Ji".l: = Eﬁu ey 2‘1"#5”. [.?.lhj

where W encodes the trace of By, and 55, is traceless:
W= —28"hy;

i =

Pl

(ﬁ” — %5“&,;-1?5;‘}), (7.17)

The entire metric is thus writlen gs

ds® = —(1 +2®)dr” + wy (drdx’ + dx'dr) + [(1 — 29)8;; + 25 Jdx"dx |

(7.18)

IThe discussion bere follows that in E, Bertschimger, “Cosmalogical Dynamacs,” o talk given at Sum-
mer School on Cosmology and Large Scale Structure (Session 60}, Les Houches, France, 1-28 Aug
[993; http: //arkiv.org/abs/astro-ph/95803125, Benschinger focuses on cosmological per-
turbation theory, in which spacelike hypersurfisces are expanding with time, bat it is simple enough 1o
specinlize 1o the case of a nonexpanding universe.
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We have not chosen a gauge or solved any equations, just defined some conve-
nient notation. The traceless tensor s;; is known as the strain, and will turn out o
contain gravitational radiation. Sometimes the decomposition of the spatial com-
ponents into trace and trace-free parts is not helpful, and we can just stick with
frips o we will use whichever notation is appropriate in individual cases, Note that,
Just as in Chapter |, the spatial metric is now simply 8;,, and we can freely raise
and lower spatial indices without changing the components.

T get a feeling for the physical interpretation of the different fields in the
metric perturbation, we consider the motion of test particles as described by the
geodesic equation. The Christoffel symbols for (7.18) are

Iy = to®

T = &P + dow,

r_?ﬂ = ;P

Fio = djwiy + $dohi;

Mk = =9 wyy + 390k ik

I'f,& = hpyi — %F#.ﬁ_,,';, (1.19)

In these expressions we have stuck with h;; rather than s;; and W, since they
enier only in the combination h;; = 2s;; — 2W4;;. The distinction will become
important once we start king traces to get to the Ricei tensor and Einstein's
equation. Since we have fixed an inertial frame, 1t 1s convenient to express the
four-momentum p* = dx* /di (where & = t/m if the particle 1s massive) in
terms of the encrgy E and three-velocity v' = dx’ /d1, as

W] f&i t
N = — =
; di

E. p'=Ev. {7.20)

Then we can take the geodesic equation

dp? o

R F Tl ot b =0, (7.21)
move the second term 1o the right-hand side so that it takes on the appearance of
a foree term, and divide both sides by E to obiain

W el

= Bt (7.22)

The p = O component describes the evolution ol the energy,

5 d I L9 i 5 1 In. :
F:_h do® 4+ 2(a8.P)" - f!.__..t!,'j'-,--r—‘,:i'ﬂh.,j_. T P (7.23)
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You might think that the energy should be conserved, bul £ = " = my only
includes the “inertial” energy of the particle—in the slowly-moving limit, the rest
energy and the kinetic energy—and not the energy from interactions with the
gravitational fheld.

The spatial components i = i of the geodesic equation become

dp" Sl . , . p 1. i
F = —FE [d, -+ dguy 4+ ?_ff.i“' tryy + L}(]jfujl:j + ("iU‘;“‘N = idf.ﬁm) LTl
(7.24)
To interpret this physically, it is convenient to define the “gravito-electric” and
“eravito-magnetic” three-vector fields,
GI
HF

— il P — oy

(¥ x i) = e uy, (7.25)

which bear an obvious resemblance to the definitions of the ordinary electric and
magnetic field in terms of a scalar and vector potential. Then (7.24) becomes

ip' L . | :
% = E[ G4 (B x HY = 20 — (fiuhm: - i:!,-h;:) u‘v"] (7.26)

The first two terms on the right-hand side describe how the test particle. moving
along a geodesic, responds to the scalar and vector perturbations @ and wy; in a
way reminiseent of the Lorentz force law in electromagnetism. We alse find cou-
plings to the spatial perturbations A, of linear and quadratic order in the three-
velocity, The relative importance of the different perturbations will of course de-
pend on the physical situation under consideration, as we will soon demonstrate,

In addition to the moton of test particles, we should examine the field equa-
tiens for the metric perturbations, which are of course the lincarized Einsiein
equations, The Riemann tensor in our variables is

Rojor = d; 8P + dodjuwyy — %"]ﬂ“'ﬂ'“ﬂ
RD;H = EJJ.-E']H:H” — ”{!“ik"”lj
Rijki = d3dhpy — 8 dyuhyy . Wigh)

with other components related by symmetries, We contract using 7*" to obtain
the Ricei tensor,

Roo = V20 + dgapw® + 30w
Y . v ISP I T e, SR, 1o . o ok
Ry = HE? wj + 3:1'Jl dpu™ + 2dgdj W+ dpdes;

Rif = =80, (@ — W) — dodygrejy + DWW — Usij + 251"1;“.[,.'.'_“*. (7.28)
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where V¥ = /3,3 ; 1s the three-dimensional flat Laplacian. Since the Ricel tensor
involves contractions, the trace-free and trace paris of the spatal perturbations
now enter in different ways. Finally, we can calculate the Einstein tensor,

Gog = 2720 + 3 as™
R L TS [y T N
an = -EV w; + sd;dyw” 4 ...r}[;ri,, W+ dydys
Gij = (8, V% = i,0,)(® — W) + & dodpw* — dodjw,,
i d ria aow k a Kl
+ 2485 W — Lsj; + 2d sy — & r‘.f;.\k 4 (7.29)

Using this expression in Einstein's equation &, = B G T, reveals that only
a small fraction of the metric components are true degrees of freedom of the
gravitational field; the rest obey constraints that determine them in terms of the
other fields. To see this, start with Gy = 87 G Tog, which we write using (7.29)
as

VAW =4 GToo — Silpins™. (7.30)

This is an equation for W with no time derivatives; if we know what Ty and s;; are
doing at any time, we can determine what W must be (up to boundary conditions
at spatial infinity). Thus, W is not by itsell a propagating degree of freedom; it is
determined by the energy-momentum tensor and the gravitational strain 5;;, Next
turn o the 0 equation, which we write as

86V — 8 i = =16 GTy; + 4800, W + 2008s;*. (7.31)

This is an equation for w' with no lime derivatives; once again, if we know the
energy-momentum tensor and the strain (from which we can find W), the vector
w' will be determined. Finally, the i j equation is

(3 V2 — 53,0 = 8aG Ty + (8;V — 89y — 28,050
— Bt + Boduwy + Tsij — 200 sp* — 80,85,

(7.32)

Once again, we see that there are no tme derivatives acting on <, which is there-
tore determined as a function of the other fields,

Thus, the only propagating degrees of freedom in Einstein's equations are
those in the strain tensor 5;;: as we will see, these are used to describe gravita-
tional waves, The other components ol Ay, are determined in terms of 5 and
the matter fields—they do not require separate initial data. In alternative theories,
such as those discussed in Section 4.8 with either additional fields or higher-order
terms in the action, the other components of the metric may become dynamical
variables. As we discuss briefly at the end of Section 7.4, propagating tensor fields
give rise upon quantization to particles of different spins, depending on the behav-
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ior of the ficld under spatial rotations. Thus, the scalars @ and ¥ would be spin-0,
the vector w; would be spin-1, and the tensor s;; is spin-2. Only the spin-2 piece
is a true particle excitation in ordinary GR.

In the previous section we showed how gauge transformations fi,, — hy, +
&y + thEy, are generated by a vector field £, Henceforth we set the parameter
e of (7.14) equal to unity, and think of the vector field £ itself as being small.
Under such a wransformation, the different metric perturbation fields change by

¢ — &+ gyt

w; —» wy + o' — kY

W @ — Lyt

Sip = Sij + 0k — 2RSS 7.33

i Sy TR FOES O, (7.33)
as you can easily check, Just as in electromagnetism and other gauge theories,
different gauges can be appropriate to differemt circumstances; here we list some
popular cholces,

Consider first the transverse gauge (2 generalization of the conformal New-

tonian or Poisson gauge sometimes used in cosmology,) The transverse gauge s

closely related to the Coulomb gauge of electromagnetism, 3;A' = 0, We begin
by fixing the strain 10 be spatially ransverse,

dist =0, {34
hy choosing £/ to satisfy
VIS 4+ 10,8 = =207 @39

The value of £¥ is still undetermined, so we can use this remaining freedom to
render the vector perturbation transverse,

Biw' = 0, (7.36)
by choosing £ 1o satisfy
ViEY = it + Bga,E’ (7.37)

The meaning of transverse becomes clear upon taking the Fourier transtorm, af-
ter which a vanishing divergence implies that a tensor is orthobgonal 1o the wave
vector. Neither (7.33) nor (7.37) completely fixes the value of £%; they are bath
second-order differential equations in spatial derivatives, which reguire boundary
conditions 1o specify a solution. For our present purposes, it suffices that solutions
will always exist. The conditions (7.34) and (7.36) wgether define the transverse
gauge. In this gauge, Einstein's eguation becomes

Goo = 2V2W = 871G Tyo, (7.38)
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Goj = —3 V7w + 2igi; W =87 GTy;, (7.39)

and

I |
| Gij = (8 V7 = 88;)(® — W) — doidw;) + 28;80% — Us;; = 8xGTij. :
(7.40)

In the remainder of this chapter, we will use these equations to find weak-field
solutions in different situations.

Another popular gauge is known as the synchronous gauge. 1t is equivalent
1o the choice of Gausstan normal coordinates, discussed in Appendix D It may
be thought of as the gravitational analogue of the temporal gauge of electromag-
netism, A" = 0, since it kills off the nonspatial components of the perturbation.
We begin by setting the scalar potential P to vanish,

=0, (7.41)
by choosing £ 1o satisfy
! = —o. (7.42)
This leaves us the ability to choose £, We can set the vector components to zero,
w' =0, (7.43%)
by choosing &' to satisfy
dot' = —w' + 5", (7.44)
The metric in synchronous gauge therefore takes on the attractive form
ds® = —dr® + (8;; + hij)dx'dx, (7.45)
This is just a matter of gauge choice, and is applicable 1o any spacetime slightly
perturbed away from Minkowski. It is straightforward to write down Einstein’s
equation in synchronous gauge, but we won't bother as we won't actually be
using it in the rest of this chapter.
In addition to transverse and synchronous gauges, in calculating the pro-

duction of gravitational waves it is convenient 10 use yet a third choice, the
Lorenz/harmonic gauge. As we will discuss below, it is equivalent to setting

By — xdh =0, (7.46)



7.2 Degrees of Freedom 285

where h = n*"h,,. This gauge does not have any especially simple expression
in terms of our decomposed perturbation fields, but it does make the linearized
Einstein equation take on a particularly simple form.

Before moving on o applications of the weak-field limit, we conclude our
discussion of degrees of freedom by drawing attention to the distinction between
our algebraic decomposinen of the metric periurbation components in (7.16), and
an additional decomposition that becomes possible if we consider tensor fields
rather than tensors defined ata point. This additienal decomposition helps to bring
ot the physical degrees of freedom more directly, and is crucial in cosmoelogical
perturbation theory. Iis basis is the standard observation that & vector tield can he
decomposed into a transverse part w', and a longitudinal part u.:‘.'l:

w = w', + wh . (7.47)
where aransverse veetor 15 divergenceless and a longiwdinal vecuor s curl-free,
i; wf_' =1 E‘.jtfj",‘ulu =1k (7.48)

Notice that these are differential equations, so clearly they only make sense when
applied to tensor fields. A transverse vector can be represented as the curl of
some other vector £/, although the choice of £ is not unique unless we impose a
subsidiary condition such as &' = 0. A longitudinal vector is the divergence of
a scalar A,

wi, =ik, wy = kA (7.49)

Just like our original decomposition ol the metnic perturbation into scalar, vector
and tensor peces, this decomposition of a vector field into parts depending on
a scalar and a transverse vector is invaniant under spatial rotations. The sealar A
clearly represents one degree of freedom; the vector £ looks like three degrees of
freedom, but one of these is illusory due to the nonuniqueness of the choice of &
(which you will notice 1s equivalent to the freedom to make gauge transformations
£ — & + Dpes). There are thus three degrees of freedom in total, as there should
be o describe the onginal vector field w'.

A similar procedure applies to the traceless symmetric tensor s/, which can
be decomposed into a transverse part 1.:’ a solenoidal part _'rg”._ and a longitudinal
part s/,

s =5 458+ 5. (7.50)
The transverse part is divergenceless, while the divergence of the solenoidal part
is a transverse (divergenceless) vector, and the divergence of the longitudinal part
is a longitudinal (curl-free) vector;

35 =0
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nom o
il; d}. sy = 0
e apdisy’ ; = 0. (7.51)

This means that the longitudinal part can be derived from a scalar field @, and the
solenoidal part can be derived from a transverse vector £,

suj = (8,9 - 48, 92) 0
Ssip = dul ), (7.52)
where
Bt = 0. (7.53)

Thus, the longitudinal part describes a single degree of freedom, while the
solenoidal part describes two degrees of freedom. The transverse part cannol
be further decomposed; 1t describes the remaining two degrees of freedom of
the symmetne traceless 3 « 3 tensor s;;. Later in this chapter we will introduce
the transverse-traceless gauge for describing gravitational waves propagating in
vacuum; in this gauge, the only nonvanishing metric perturbation is the transverse
tensor perturbation s .

With this decomposition of tensor hields, we have succeeded i writing the
original ten-component metric perturbation Ay, in terms of four scalars (9, ¥, A,
and #) with one degree of freedom each, two transverse vectors (&' and ) with
twa degrees of freedom cach. and one wansverse-traceless tensor L.!."_fJ with two
degrees of freedom. People refer 1o this set of ficlds when they speak ol “scalar.”
“vector,” and “tensor” modes, We can then decompose the energy-momentum
tensor in a similar way, write Einstein’s equation in terms of these variables, and
isolate the physical (gauge-invariant) degrees of freedom. We won't use this de-
composition in this book, but you should be aware of its existence when referring
to the literature.,

NEWTONIAN FIELDS AND PHOTON TRAJECTORIES

We previously defined the *Newtonian limit'” as describing weak fields for which
sources were static and test particles were slowly moving. In this section we will
extend this definition somewhat, sull restricting ourselves W static sources but
allowing the test particles to move at any velecity, There is clearly an important
difference, as we previcusly only needed to consider effects of the goo compo-
nent of the metrie, but we will find that relativistic particles respond to spatial
components of the metric as well,

We can model our static gravitating sources by dust, a perfect fluid for which
the pressure vanishes, (Most of the matter in the universe is well approximated by
dust, including stars, planets, galaxies. and even dark matter.) We work in the rest
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frame of the dust, where the energy-momentum tensor takes the form

j &

0

?_i“u = IJ,JL-'I“L'ILI - (?.54]

0

Since our background is flat Minkowski space, it is straightforward to accommo-
date moving sources by simply Lorentz-transfornung into their rest frame; what
we are unable 1o deal with in this limit is multiple sources with large relative
velocities.

Turn 10 Einstein’s equation in the transverse gauge, (7.38)—(7.40). For static
sources we drop all time-derivative terms, and simultaneously plug in the energy-
momentum tensor (7.54), o obtain

Vi = 4nGp
".'-?'.E:J'l_r =1
(@7 V% = ) (@ — W) — Vg = 0. (1.55)

We will look for solutions that are both nonsingular and well-behaved at infinity;
consequently, only those fields that are sourced by the right-hand side will be
nonvanishing. For example, the second equation in (7.33) immediately implies
w' = 0. We next take the trace of the third equation (summing over ')

293P — W) =0, (7.56)
This enforces equality of the two sealar potentials,
b=, (7.57)

Recall that in our initial discussion of the Newtonian limit in Chapter 4, we argued
that the (00 component & of the perturbation (which is responsible for the moetion
of nonrelativistic particles) obeyed the Poisson equation: from (7.55) it appears
as il it is actually the scalar perturbation W to the spatial components that obeys
this equation, The implhicit connection s provided by (7.56), which sets the two
potentials equal when the trace of T;; (the sum of the three principle pressures)
vanishes, Finally we can plug & = W into the last equation of (7.55) to get

Vi =0, (7.58)

which imphies 5;; = 0 for a well-behaved solution.
The perturbed metric for static Newtonian sources is therefore

ds? = —(1 +20)de? + (1 — 20)(dx? + dyv? +dz?), (7.59)
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FIGURE 7.3 A deflected geodesic x* (i), decomposed into a background geodesic
O and a perturbation x(V#_ The deflection angle & represents (minus) the amount by
which the wave vector rotates along the path, A single mass M with impact parameter b is
depicted, although the setup is more general.

or equivalently
-2¢
by = ; (7.60)
-2¢

where the potential obeys the conventional Poisson equation,
Vi = dnGp. (7.61)

This is an important extension of our result from Chapter 4, since we now know
the perturbation of the spatial metric as well as hoo.

MNow let us consider the path of a photon (or other massless particle) through
this geometry; in other words, solve the perturbed geodesic equation for a null
trajectory x* (A).* The geometry we consider is portrayed in Figure 7.3. Recall
that our philosophy is to consider the metric perturbation as a field defined on
a flat background spacetime. Similarly, we can decompose the geodesic into a
background path plus a perturbation,

dr ) = xR0y 4 x ey, (7.62)

where x ' solves the geodesic equation in the background (in other words, is just
a straight null path). We then evaluate all quantities along the background path, to
solve for x'V#(3.). For this procedure to make sense, we need to assume that the
potential € is not appreciably different along the background and true geodesics;
this condition amounts to requiring that xWVig @ « @, If this condition is not
true, however, all is not lost. If we consider only very short paths, the deviation

*The approach we use is outlined in T. Pyne and M. Birkinshaw, Astrophys. Journ. 458, 46 (1996),
http://arxiv.org/abs/astro-ph/9504060.
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U will necessarily be small, and our approximation will be valid, But then we
can assemble larger paths owt of such short segments. As a result, we will derive
true equations, but the paths over which we integrate will be the acrual path x* (1),
rather than the background path x' (). As long as this is understood, our results
will be valid for any trajectories in the perturbed spacetime.

For convenience we denote the wave vector of the background path as &%, and
the derivative of the deviation vector as £

i} A1)
peEl gD (7.63)
dk dh
The condition that a path be null is of course
dafdx” . 0 7.64)
HATEP T '

which we must solve order-by-order. At zeroth order we simply have n, k"t =
(. or

k%2 = (k) = &%, (7.65)

where & 15 the three-vector with components £, This equation serves as the defi-
nition of the constant &. Then at first order we obtain

2 k? ¥ 4+ R kP KT =10, (7.66)

or

k" k=2

2

o (7.67)
We now turn to the perturbed geodesic equation,

d?xh dx? dx”
— [ — =), 7.68)
dAZ T T (7.8

The Christoffel symbols can be found by setting w' = 0 and hij = —2®&;; in
{7.19)

FHJ- - r;l'] = d; P,
l“..fﬁ-' B ﬁ‘,-j,:'i,.'ﬂ'—' - r'i,';_-:'i",'d} — d; iy b (7.69)

The zeroth-order geodesic equation simply tells us that x'7% is a straight trajec-
tory, while at first order we have

d i

F}\_ = —I*:iokﬂkn. (T.?UJ
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There are no factors of £ on the right-hand side, since the Chnistoffel symbols
are already first-order in the perturbation. The o = 0 component of (7.70) 15

d¢° o
— = =2k(k - V), (7.71)
d
while the spatial components are
di -
— = —2k*V, D, (7.72)

i

Here we have introduced the gradient transverse o the path. defined as the total
gradient minus the gradient along the path,

1
<Ji

v, P

& —Vid
V> — k2 (k- V)R, (7.73)
In all of these expressions, the path means the background path.

Note that, to first order in 4, the spatial wave vector perturbation £ is orthogo-
nal to the original spatial wave vector £, To see this, we can get an expression for
&9 by integrating (7.71) to get

= —2% }(E- Tb)da

dx =
= —2k — -V | di
f(r!?, )

= -2k f Vb . di
= 2k, (7.74)

The constant of integration is fixed by demanding that €7 = 0 when & = 0.
Plugging this into (7.67) reveals

£k =ki®+ 2% =0, (7.75)

verifying thal { and & are orthogoenal 1o first order.

The deflection angle & is the amount by which the original spatial wave vector
is deflected as it travels from a source to the observer; it is a two-dimensional
vector in the plane perpendicular to k. (We use the notation @ rather than &, as the
later is used for the reduced deflection angle introduced in Chapier 8.) From the
geometry portrayed in Figure 7.3, the deflection angle can be expressed as



7.3 Newtonian Fields and Photon Trajeclories 29

g —%. (7.76)

where the minus sign simply accoums for the fact that the deflection angle 15
measured by an observer looking backward along the photon path. The roation
of the wave vector can be caleulated from (7.72) as

si=f s
s T

= 242 f Vi ddi. (7.77)
The deflection angle can therefore be expressed as an integral over the physical

spatial distance traversed, s = &4, as

&= 2f V. D ds. (7.78)

We can evaluate the deflection angle in the case of a poinl mass, where we
imagine the background path to be along the x-direction with an impact parameter
defined by a transverse vector b pointing from the path to the mass at the point of
closest approach. Setting & = &, the potentaal is

oM GM

== 7.79
r (B2 + x2)1/2 G

and its transverse gradient is therefore

M -

T Bt

The deflection angle is thus

dx
8 =20Mb | ————
® f%b:-r.fzﬁj’f‘?
40M
= 5 (7.81)

where the integral has been taken from —o¢ to o, presuming that both source
and observer are very far from the deflecting mass. Note that ¢ = 1 in our units; a
factor of ¢ should be inserted in the denominator of {(7.81) in other systems.
Deflection of light by the Sun was historically a crucial test of general relativ-
ity. Einstein proposed three such tests: precession of the perithelion of Mercury,
gravitational redshift, and deflection of light, The precession of Mercury's perihe-
lion was successtully explained by GR, but this explained a discrepancy that had
already been observed; gravitational redshift was not observed until much later,
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so deflection of light was the first time that Einstein's theory correctly predicted a
phenomenon that had not yet been detected. A famous expedition led by Edding-
ton observed the positions of stars near the Sun during a 1919 1otal eclipse; the ob-
servations were in agreement with the GR prediction, leading 1o fron-page stories
in newspapers around the world. The predicted effect is quite small: for the Sun
we have G Mg /e? = 1.48 = 10° cm, and the solar radius is R = 6.96 < 10" ¢m,
leading to a maximum deflection angle of & = 1.75 arcsecs. Later re-evaluation
of Eddington’s results has cast doubt upon whether he actually obtained the preci-
siom that was originally claimed; contemporary measurements use high-precision
interferometric observations of quasars passing behind the Sun to obtain very ac-
curate tests of GR (which it has so far passed). Meanwhile, observation of light
deflection by astrophysical sources such as galaxies and stars has become a vi-
brant area of research, under the name of “gravitanonal lensing.” OF course in
these circumstances we rarely know the mass of the lens well enough o provide
precision tests of GR: instead, it is more common to use the observed deflection
angle as a way to measure the mass, We will discuss lensing more in Chapter 8,
In additien to the deflection of light, in 1964 Shapiro pointed out another ob-
servable consequence of weak-field general relativity on photon trajectories: grav-
itational time delay. The total coordinate time elapsed along a null path is

Ef.“.’“
= | ——da. (7.82)
; f ¢ (

We are putting ourselves in the position of an observer far from any sources, at
rest in the background inertial frame, so coordinate time is our proper time, In
the presence of a Newtonian potential, the photons appear to “slow down’™ with
respect to the background light cones, leading to an additional time delay of

dx 1o
A= da
; f =

A

f £ da

— 2k [ L (7.83)

or
Apr= —Ef Py, (7.84)

According to our rules, the integral is performed over the background path. In
addition to this Shapiro delay, there can be an additional “geometric” time delay
because the spatial distance traversed by the real path is longer than that of the
background path. For deflection of light by the Sun the geometric delay effect s
negligible, but in cosmological applications it can be comparable to the Shapiro
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cffect. The time delay has been observed, most precisely by making use of space-
craft rather than naturally-occurring objects; for details see Will (1981).

The motion of photons through & Newtonian potential, leading to both the de-
flection of light and the gravitational time delay, could equivalently be derived by
imagining that the photons are propagating in a medium with refractive index

n=1-2d, i(7.85)

1o first order. Indeed. we could have feund the equations of motion {or the photen
by using Fermat's principle of least time; you are asked 1o demonstrate this in the
cxereises.

GRAVITATIONAL WAVE SOLUTIONS

An even more exciting application of the weak-field hmit 15 to gravitational ra-
diation. Here we are studying the Ireely-propagating degrees ol freedom of the
gravitational field, requiring no local sources for their existence (although they
can of course be generated by such sources). We therefore turn once again 1o the
weak-ficld equations in transverse gauge, (7.381-(7.40), this time keeping time
derivatives but completely twrning off the energy-momentum tensor, T, = (0,
The 00 equation 15 then

Veg =0, (7.86)

which with well-behaved boundary conditions implies ¥ = 0. Then the () equa-
tion is

Vi =0, (7.87)

which again implies w, = 0.
We turn next o the trace of the i equation, which (plugging in the above
results) yields

Vi =0, (7.88)

which implies & = 0,
We are therefore left with the trace-free part of the {j equation, which becomes
a wave equation for the traceless strain tensor;

Csij =0, (7.89)

Although it has been convenient thus far to work with ;. it is far more common in
the literature to find expressions written in terms of the entire metric perturbation
frgu, but in an ansatz where all of the other degrees of freedom (&, W, w;) are
sel Lo cere (and s5;; is transverse). This is commonly known as the transverse
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traceless gauge, in which we have

a0 o0 0
=14 i . (7.90)
0
The equation of motion is then
Ok, =0 (7.91)

To make it casier to compare with other resources, in our discussion of gravita-
tional waves we will use I;:,T rather than s;;. keeping in mind that hfﬂf. is purely
spatial, traceless and transverse:

hiT =0
n"“'hm; =10
duhiiy = 0. (7.92)

From the wave equation (7.91) we begin finding solutions, Those familiar with
the analogous problem n electromagnetism will notice that the procedure is al-
most precisely the same. A particularly useful set of selutions o this wave equa-
tion are the plane waves, given by

T =, ek (7.93)

v

where ), 15 a constant, symmoetric, (0, 2) tensor, which is obviously raceless
and purely spatial:

Coe =10
FJ’I“.C;H' =1}, (7.94)

- b LI . B . » -
Of course e'**" 15 complex, while F:H is real; we carry both real and imaginary
parts through the calculation, and take the real part at the end. The constant vector
E7 js the wave vector. To check that we have a solution, we plug in:

0= Dk,

e

— rr‘m.ii” HUHE

= 0P, (ikah1))

(T8

o

= —ksk"htT (7.95)

T
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T

Since, for an interesting solution, not all of the components of A, will be zero

everywhere, we must have
ka k% =0, (7.96)

The plane wave (7.93) s therefore 4 solution to the linearized equation if the wave
vector is null: this is loosely translated into the statement that gravitational waves
propagate at the speed of light. The tmelike component ol the wave vector is
the frequency of the wave, and we write k7 = (. k LB, (More generally,
an observer moving with four-velocity % would observe the wave to have a
[requency & = —k, U".) Then the condition that the wave vector be null becomes

wh =&k R (7.97)

Of course our wave is far from the most general solution; any (possibly infinite)
number of distinet plane waves can be added together and will still solve the linear
equation (7.91). Indeed, any solution can be written as such a superposition.

We still need 1o ensure that the perturbation is transverse. This means that

0= g, by
= iCHk et " (7.98)
which is only true if
ku CH = 0. (7.99)

We say that the wave vector is orthogonal to CFY,
Our solution can be made more explicit by cheosing spatial coordinaies such
that the wave is traveling in the x* direction; that is,

k= (@, 0,0, 4% = (@,0,0. w), (7.100)

where we know that & = w because the wave vector is null. In this case, & .
O and Cyy = O rogether imply

Ci, =0 (7.101)

The only nonzero components of €, are therefore Cyy, Ca, Cpp, and Cyp. But
C v is traceless and symmetric, so in general we can write

0 0 ¥ ]
0 Cy Ciz 0
0 Cpp —=Cp 0
0 0 0

Cpye (7.102)

Thus, for a plane wave in this gauge traveling in the x¥ direction, the two com-
ponents C'q and Ci2 (along with the frequency @) completely characterize the
Wave,
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To get a feeling for the physical elfect of a passing gravilational wave, consider
the motion of wst particles in the presence of a wave. It is certainly insufficiem
1o solve for the trajectory of a single particle, since that would only tell us about
the values of the coordinates along the world line, In fact, for any single particle
we can find transverse traceless coordinates in which the particle appears sta-
tionary to first order in hﬂ. To ebtain a coordinate-independent measure of the
wave's effects, we consider the relative motion of nearby particles, as described
by the geodesic deviation equation. If we consider some nearby particles with
four-velocities described by a single vector field 7% (1) and separation vector §%,
we have

2
%.‘i"" = Ry UM s (T.103)

We would like to compute the right-hand side to first order in .‘:H. II' we take
our test particles to be moving slowly, we can express the four-velocity as a unit
vector in the time direction plus corrections of order A F[H and higher; but we know
that the Riemann tensor is already first order, so the corrections to UV may be

ignored, and we wrile
U= (1,0.0.0), (7.104)

Therefore we only need to compute B poy, or equivalently Koo, From (7.5) we
have

Ruoos = 5(todohyy + o duhg — dptoh g — 8,d0h15). (7.105)

1]

But 4§ = 0. s0

Ryuote = $dodoh ). . (7.106)
Meanwhile, for our slowly-moving particles we have T = x% = 1 1o lowest order,
so the geodesic deviation equation becomes
i I, 8% o
— 5 = =857 —hTTR,, 7.107)
HIE 2” 2" e . :

For our wave traveling in the x* direction, this implies that only 5' and §* will be
affected—the test particles are only disturbed in directions perpendicular to the
wave vector. This is of course familiar from electromagnetism, where the ¢lectric
and magnetic fields in a plane wave are perpendicular to the wave vector,

Chur wave 15 characterized by the two numbers, which for future convenience
we will rename as follows:

e =0Cn
Ay =Ly {7108}
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s0 that

g 0 8] 0
0 he hy 0
O hy —=hy 0
0 - {) 0

r]n' = {_l".lqul

Let's consider their effects separately, beginning with the case by = 0. Then we
have

i’ f -, &F .
msl = ;gl [I;?“I.H.‘”'“ } (7.1101)
and
a2 b, 8 id
FS-_ = —;‘;E ;—ri{h.Ff'"th _, {?_I] IJ

These can be immediately solved o yield, to lowest erder,
§' = (1+ Jhye™") 5'00) (7.112)
and

5% = (1 - Jhseh") s%0). (7.113)
Thus, particles inttially separated in the x! direction will oscillate in the x' direc-
tion, and likewise for those with an initial x* separation. That is, if we start with a
ring of stationary particles in the x-y plane, as the wave passes they will bounce
back and forth in the shape of a "+ as shown in Figure 7.4, On the other hand,
the equivalent analysis for the ¢case where hy = 0 but . # 0 would yield the
solution

ST = 8§10 + Jhe™*" 520) (7.114)
and

§% = $3(0) + Lhe™ " 51(0). (7.115)

4%

o . *\-j . i - .
AT R Y Y atAYe
L Jla ' . + 1:‘ « b '~., . __) ‘. . ;? + s + 1 3 J;
2 / i A ' | / _
I\h‘_/i "*‘—O-F S \Q\__'__,.i -

(1

i ‘“H—q-—-"
1

X

FIGURE 7.4 The effect of a gravitational wave with + polarization is to distort & circle
of west particles imo ellipses oseillating in a + panem.
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FIGURE 7.5 The effect of a gravitational wave with = polarization 15 (o distort a circle
of west particles into ellipses oscillating in a = pattern.

In this case the circle of particles would bounce back and forth in the shape of
a “x." as shown i Figure 7.5. The notation fiy and fi . should therefore be clear,
These twa quantities measure the two independent modes of linear polarization of
the gravitational wave, known as the “plus” and “cross” polarizations, I we liked
we could consider right- and left-handed circularly polarized modes by defining

|
e = E{h, F+ ikl
1 3
hy = —=(hy —ih). (7.116)

T2

The effect of a pure hiy wave would be to rotate the particles in a right-handed
sense, as shown in Figure 7.6, and similarly for the left-handed mode k. Note
that the individual particles do not travel around the ring; they just move in litle
epicycles.

We can relate the polarization states of classical gravitational waves 10 the
kinds of particles we would expeet 1o find upon quantization. The spin of a guan-
tized field is directly related to the transformation properties of that field un-
der spatial rotations. The electromagnetic field has two independent polarization
states described by vectors in the x-y plane; equivalently, a single polarization
mode is invariant under a rotation by 3607 in this plane, Upon quantization this
theery vields the photon, a massless spin-1 particle. The neutrino, on the other
hand, is also a massless particle, deseribed by a field that picks up a minus sign
under rotations by 3607 it is invariant under rotations of 7207, and we say it has

rr/ 3 { F‘H“\‘ /'/ﬁ AV e
T. - + \.\' s {‘_ ’ 4’( : / } \* oy
A e i '\J’ e

&

e B
R

FIGURE 7.6 The effect of a gravitational wave with & polarization 1$ to distort a circle
of test particles into an ellipse that rotates in a right-handed sense.



7.4 Gravitational Wave Solutions 299

spin-. The general rule is that the spin § is related to the angle # under which
the polarization modes are invariant by § = 360°/6. The gravitational field,
whose waves propagate at the speed of light, should lead to massless particles
in the quantum theory. Noticing that the polarization modes we have described
are invariant under rotations of 1807 in the x-y plane, we expect the associated
particles—gravitons—to be spin-2. We are a long way from detecting such par-
ticles (and it would not be a surprise if we never detected them directly), but any
respectable quantum theory of gravity should predict their existence,

In fact, starting with a theory of spin-2 gravitons and requiring some simple
properties provides a nice way to derive the full Einstein’s equation of general rel-
ativity. Imagine starting with the Lagrangian (7.9) for the symmetric tensor fi,,,
but now imagining that this “really is™ a physical field propagating in Minkow-
ski spacetime rather than a perturbation o a dynamical metric. (This Lagrangian
doesn't include couplings to matter, but it is straightforward to do s0.) Now make
the additional demand that fi ., couple to its own energy-momentum tensor (dis-
cussed below), as well as to the matter energy-momentum tensor. This induces
higher-order nonlinear terms in the action, and consequently induces additional
“energy-momentum’ terms of even higher order. By repeating this process, an
infinite series of terms is introduced, but the series can be summed (o a simple
expression, perhaps because you already know the answer—the Einstein—Hilbert
action (possibly with some higher-order terms). In the process, we find that matter
couples to the unique combination g,, = Ny, + Ay, In other words, by asking
for a theory of a spin-2 field coupling to the energy-momentum tensor, we end
up with the fully nonlinear glory of general relativity. The background metric ny,
becomes completely unobservable. Of course, some of the global geometric as-
pects of GR are obscured by this procedure, which ultimately is just another way
of justifying Einstein’s equation.

While we are noting amusing things, let’s point out that the behavior of gravita-
tional waves yields a clue as to why string theory gives rise to a quantum theory of
gravity. Consider the fundamental vibrational modes of a loop of string, as shown
in Figure 7.7. There are three lowest-energy modes for a loop of string: an over-

S "y

FIGURE 7.7 The three fundamental vibrational modes of a loop of string. The overall
“breathing” mode (far left) is invariant under rotations, and gives rise to a spin-0 particle,
The other two modes match the two polarizations of a gravitational wave, and represent
the two states of a massless spin-2 particle.
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all oscillation of its size, plus two independent ways it can oscillate into ellipses.
These give rise o three massless degrees of freedom: a spin-0) particle (the dila-
ton) and a massless spin-2 particle (the graviton). Notice the obvious similarity
between the string oscillations and the mouon of test particles under the influ-
ence of a gravitational wave: this is no accident, and is the reason why quantized
strings inevitably give rise to gravity, (String theory was originally investigated as
a theory of the strong interactions, but different models would inevitably predict
an unnecessary massless spin-2 particle; eventually 11 was realized that this flaw
could be a virtue, if the theory came 10 be thought of as a quantum theory of grav-
ity.} The extra unwanted spin-0 (scalar) mode reflects the fact that siring theory
actually predicts a scalar-tensor theory of gravity (as discussed in Section 4.8)
rather than ordinary GR. Since a massless scalar of this sort is nol observed in
natre, some mechanism must work to give a mass o the scalar at low energies,

PRODUCTION OF GRAVITATIONAL WAVES

With plane-wave solutions to the linearized vacuum equation in our possession,
it remains 10 discuss the generation of gravitational radiation by sources. For
this purpose it is necessary to consider Einstein's equation coupled to matter,
Guv = 81 GTy,. Because Ty, doesn’t vanish, the metric perturbation will in-
clude nonzero scalar and vector components as well as the strain (ensor represent-
ing gravitational waves; we cannoet assume that our solution takes the transverse-
traceless form (7.90). Instead, we will keep the entire perturbation b, and solve
tor the produced gravitational wave far from the source. where we can then im-
pose transverse-traceless gauge.

There are still some convenient simplifications we can introduce, even in the
presence of sources. We first define the trace-reversed perturbation,

By = huy — $hnuy. (7.117)
The name of the trace-reversed perturbation makes sense, since
h= rf‘”'}_rm. = —h. (T.118)

Obviously we can reconstruct the original perturbation from the trace-reversed
form, so no infermation has been lost. Note also that, if we are in vacuum far away
from any seurces and can go 1o ransverse-traceless gauge, the race-reversed per-
turbation will be equal to the original perturbation,

Ifi"f"l =

e

KT

(IS

(7.119)

Meanwhile, we are still free 1o choose some sort of gauge. Under a gauge
transformation (7.14), the trace-reversed perturbation transforms as

*F’m- = fzﬁ.“. + 2, Eny — Ei;f"m”_ (7.120)
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By choosing a gauge parameter £, satisfving
Ok, = =™, (7.121)
we can therefore set
8, h" =0, (7.122)

This condition is known as the Lorenz gauge, analegous with the similar condi-
tion 6, A" = 0 often used in electromagnetism.” Note that the original perturba-
tion is not transverse in this gauge; rather. we have

B h* = $avh. (7.123)

Plugging the definition of the trace-reversed perturbation into our expression
for the Einstein tensor (7.8}, and using the Lorenz gauge condition, yields the very
CONCISe CXPression

Gy = —3 Thy (7.124)

The analogous expression in terms of the original perturbation fiy,, s slightly
messier; this is the reason for introducing fi ;. The lincarized Einstein equation
in this gauge is therefore simply a wave equation for each component,

Jhyy = =168 GTy,. (7.125)

The solution to such an equation can be obtained using a Green function, in pre-
cisely the same way as the analogous problem in electromagnetism. Here we will
review the outline of the method, following Wald (1984 ).

The Green function Gx® — y7) for the d” Alembertian operator U 1s the solu-
tion of the wave equation in the presence of a delta-function source:

Cx G = y") = 8M(x® - y7), (7.126)

where T, denotes the d" Alembertian with respect to the coordinates x7 . The use-
fulness of such a function resides in the fact that the general solution 10 an equa-
tion such as (7.125) can be written

I_:,“.{J:“} = —lﬁrrGfG{x" - ¥ ) T (¥ ) %y, (7.127

as can be verified immediatelv. (Notice that no factors of /=g are necessary,
since our background is simply flat spacetime.) The solutions to (7.126) have of
course been worked out long ago, and they can be thought of as either “retarded”
or “advanced,” depending on whether they represent waves traveling forward or

Mote the spelling, The “pauge” was origimated by Ludwig Lorenz (1829-1891), while the more
famous “transformation” was invented by Hendrick Amtoon Lorentz (1853-1928). See J.D. Jackson
and L.B. Okun, Rev, Mod. Plys. 73, 663 (2001),
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FIGURE 7.8 Disturbances in the gravitational field at (z, x*) are calculated in terms of
events on the past light cone.

backward in time, Our interest is in the retarded Green function, which represents
the accumulated effect of signals to the past of the points under consideration. It
is given by

A SR Y, NN, Y. (P W
G(x* —y") = 4n|x—yla{lx yi— "= y)18x" —y%).  (7.128)

Here we have used boldface to denote the spatial vectors x = (x!, x2, x%) and
y = (', 2, %), with norm [x — y| = [&;(x' — y)(x/ — y/)]"/2, The theta
function 8(x® — y%) equals 1 when x* > y°, and zero otherwise. The derivation
of (7.128) would take us too far afield, but it can be found in any standard text on
electrodynamics or partial differential equations in physics.

Upon plugging (7.128) into (7.127), we can use the delta function to perform
the integral over y”, leaving us with

1

g Tl — =y &y, (7.129)

ng(h x) =4G f

where t = x¥. The term “retarded time" is used to refer to the quantity
L=t—|x—Y¥| (7.130)

The interpretation of (7.129) should be clear: the disturbance in the gravitational
field at (¢, x) is a sum of the influences from the energy and momentum sources
at the point (f, X — y) on the past light cone, as depicted in Figure 7.8.

Let us take this general solution and consider the case where the gravitational
radiation is emitted by an isolated source, fairly far away, comprised of nonrela-
tivistic matter; these approximations will be made more precise as we go on. First
we need to set up some conventions for Fourier transforms, which always make
life casier when dealing with oscillatory phenomena. Given a function of space-
time ¢ (1, x), we are interested in its Fourier transform (and inverse) with respect
to time alone,
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Eﬁfw. X) = :éz fdi‘ e p(r, x),
3
P(1,x) = _\;,% fdm e~ F(w, X). (7.131)

Taking the transform of the metri¢ perturbation, we obtain

-

f—r#,{w,xj dr e'“”hm 1 x)

!

Tuvlt — Ix =yl ¥)
dr d’y et -
< =

ity iosjx—y Luv(r: ¥)
= dt d3 | gl ple|X ¥yl Zuv
\,-’an 1= x —yl

= 4G faﬁ;,- oyl E‘Iii-’i;‘f’ﬁi (7.132)

In this sequence, the first equation is simply the definition of the Fourier trans-
form, the second line comes from the solution (7.129), the third line is a change
of variables from r to 1, and the fourth line is once again the definition of the
Fourier transform.

We now make the approximations that our source is isolated, far away, and
slowly moving. This means that we can consider the source to be centered at
a (spatial) distance r, with the different parts of the source at distances r + ér
such that §r < r, as shown in Figure 7.9, Since it is slowly moving, most of
the radiation emitted will be at frequencies w sufficiently low that 8r < w™!.
{Essentially, light traverses the source much faster than the components of the
source itself do.) Under these approximations, the term &'“*~¥! /|x — y| can be
replaced by e’ /r and brought outside the integral, This leaves us with

Bl X) = 4G 3y Tl y). (7.133)

observer

¢

FIGURE 7.9 A source of size &r, at a distance r from the observer.
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In fact there is no need o compute all of the components of f,, (), X), since
p p i
the Lorenz gauge condition d, h*" (1, x) = 0 in Fourier space implies

B = La ki, (7.134)
[

We therefore only need to concern ourselves with the spacelike components of
.ﬁm.(m x), and I recover Fr”" from (7.134). The first thing to do is to set v = j to

find h”i from h” which we would then use to find .‘:m from h‘ﬂ From (7.133)
we therefore want 1o take the integral of the spacelike components of ?}. ulin, ¥).
We begin by integrating by parts in reverse:

fd-‘y T4 (e, y) =f;agt_r"ff“'“}d-‘_c —f}f’fﬂk'.?:“}dj_v. (7.135)

The first term is a surface integral which will vanish since the source is isolated,
while the second can be related to T% by the Fourier-space version of 4, T#" = 0

—ﬂ;;?'t” = !-mj-‘-'uly1 {7.136)

j {21.1:'*' i:[,l'{n_,_ }'J = wa J,Ifuj d.-'lj.

= ’; f{].rfni +,1'J"]"':{”'] d*y

Tfl”"“lt'\'j?m} Lr’}.""fi«l;?m}} d’y

Thus,

w? i J 00 g3
=—ng.- v T d”y. (7.137)

The second line is justified since we know that the left-hand side is symmetric in i
and j, while the third and fourth lines are simply repetitions of reverse integration
by parts and conservation of 77" It is conventional 1o define the gquadrupole
moment tensor of the energy density of the scurce,

Iij(ty = f,v"z.-fo""u. vid'y, (7.138)

a constant tensor on each surface of constant time. The overall normalization of
the quadrupole tensor is a matier of convention, and by no means universal, so be
careful in comparing different references. In terms of the Fourier transform of the
guadrupole moment, our selution takes on the compact form

fer

lijlew). (7.139)

E,-,{m, X) = —2Gw’
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We can transform this back to ¢ 1o obtain the quadrupole formula,

(7.140)

. 26 d*1;;
hiilt.x) = :;J Ir),

ard

where as before r, =1 — r.

The gravitational wave produced by an isolated nonrelativistic object is there-
fore proportional to the second derivative of the quadrupole moment of the energy
density at the point where the past light cone of the observer intersects the source.
In contrast, the leading contribution to electromagnetic radiation comes from the
changing dipole moment of the charge density, The difference can be traced back
o the universal nature of gravitation. A changing dipole moment corresponds 1o
motion of the center of densuy—charge density in the case of electromagnetisin,
energy density in the case of gravitation. While there is nothing to stop the center
of charge of an object from oscillating, oscillation of the center of mass of an
isolated system violates conservation of momentum. (You can shake a body up
and down, but you and the earth shake ever so shightly in the opposite direction
to cempensate.) The quadrupole moment, which measures the shape ol the sys-
tem, is generally smaller than the dipoele moment, and for this reason, as well as
the weak coupling of matter to gravity, gravitational radiation 18 typically much
weaker than electromagnetic radiation,

One case of special interest is the gravitational radiation emited by a binary
star (two stars in orbit around each other). For simplicity let us consider two stars
of mass M in a circular orbit in the x'-x¥ plane, at distance R from their commen
center of mass, as shown in Figure 7. 10, We will treat the moton of the stars in the
Newtonian approximation, where we can discuss their orbit just as Kepler would
have, Circular orbits are most easily characterized by equating the force due o
gravity to the outward “centrifugal”™ force:

GM?: Ml
e e (7.141)
(2R)? R
which gives us
GM\'*
p= | — ; (7.142)
v=(35) |
The wme it takes to complete a single orbit is simply
Znk
p o (7.143)

]

but more useful to us is the angular frequency of the orbit,

2 GMy 2
Q:%:(ﬁ) , (7.144)
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FIGURE 7.10 A binary star system. Two stars of mass M orbit in the x'-x2 plane with
an orbital radius R,

In terms of £ we can write down the explicit path of star a,
x}=RcosQu,  x}=Rsinqu, (7.145)
and star b,
er[ = —Rcos {2, ):Ex — R sin £21. (7.146)
The corresponding energy density is
T%(t,x) = MS(x)[8(x" — Roos Q)8 (x* — Rsin Q)
+8(x' + Reos Qn)é(x* + RsinQn)].  (7.147)

The profusion of delta functions allows us to integrate this straightforwardly o
obtain the quadrupole moment from (7.138):

Iy =2MR?cos® @t = MR*(1 + cos 28)
Iy = 2MR*sin® it = MR*(1 — cos 21)
Iz = Iy = 2M R*(cos Q1)(sin 1) = MR? sin2Q
liz = 0. (7.148)

From this in turn it is easy to get the components of the metric perturbation from
(7.140):
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- T s : iAoy
sGM ?( cos 2521, sin 2824, G)

hij(r,x) = QPR —sin2Qr,  cos2Su, 0

] 1] 8]

(7.149)

r

The remaining components of f-i“.- could be derived from demanding that the
Lorene gauge condition be satisfied.

ENERGY LOSS DUE TO GRAVITATIONAL RADIATION

It is natural at this point (o alk about the energy emitted via gravitational radia-
tion, Such a discussion, however, is immediately beset by problems, both techni-
cal and philosophical. As we have mentioned before, there 15 no true local measure
of the energy in the gravitational field. Of course, in the weak field limit, where
we think of gravitation as being described by a symmetric tensor propagating on
a fixed background metric, we might hope to derive an energy-momentum ten-
sor Tor the fluctuations o, just as we would for electromagnetism or any other
field theory. To some extent this is possible. but still difficult. As a result of these
difficultes there are a number of different proposals in the literature for what we
should vse as the energy-momentum tensor for gravitation in the weak field limit;
all of them are different, but for the most part they give the same answers for
physically well-posed guestions such as the rate of energy emitied by a binary
systemn.

At a technical level, the difficultics begin to arise when we consider what
form the energy-momentum tensor should take, We have previously mentioned
the energy-momentum lensors for electiromagnetism and scalar field theory, both
of which share an important feature—they are quadratic in the relevant fields. By
hypothesis, our approach 1o the weak field limit has been to keep only terms that
are linear in the metric perturbation. Hence, in order to keep track of the energy
carried by the gravitational waves, we will have 10 extend our calculations (o at
least second order in by, In fact we have been cheating slightly all along. In dis-
cussing the effects of gravitational waves on test particles, and the generation of
waves by a binary system, we have been using the fact that test particles move
along geodesics, But as we know, this is derived from the covariant conservation
of energy-momentum, ¥, 74" = (., In the order to which we have been work-
ing. however, we actually have o, 7*" = 0, which would imply that test particles
move on straight lines in the Aat background metric. This 1s a symptom of the
inahility of the weak field limit to describe sell-gravitating systems. In practice,
the best that can be done is w solve the weak field equation 1o some appropriate
order, and then justfy after the fact the validity of the solution. We will follow the
procedure outlined in Chapters 35 and 36 of Misner, Thorne, and Wheeler (1973,
where additional discussion of subileties may be found. Sce also Wald (1984) and
Schutz (1985},

Let us now examine Einstein’s vacuum equation Ry, = 0 to second order, and
see how the result can be mterpreted in terms of an energy-momentum tensor for
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the gravitational ficld. We expand both the metric and the Ricei tensor,

. >
Buv = uv + fr}fﬂ + hE:‘:

(D 4 @ (7.150)

TRt nw

R =R% 4R

e

{11 4 i 3 2 2 .
where R,'“:' is taken to be of the same order as hﬂ:. while R}“;' and hLﬂ are of
1 &,
order {Fr};L:‘J:. Because we work in a flat background, the zeroth-order equation
0 . ; ; v
Rf, v = 0 is auntomatically solved. The first-order vacuum equation is simply

R =, (7.151)

FEay

which determines the first-order perturbation h:;],’.h {up to gauge transformations).
The second-order perturbation !iﬁ,lﬂ will be determined by the second-order equa-
tion

RV + R A1) = 0. (7.152)
The notation RLI..][FJ“T '| indicates the parts of the expanded Ricei tensor that are
linear in the metric perturbation, as given by (7.6), applied w the second-order

j - a . i H &Y .

perturbation h:f.].\'. meanwhile, R}.z,? [A*"] stands for the quadratic part of the ex-
panded Riccl tensor,

RZ) = 107 8,0uhoq + H(Buhpa)Bh® + (87 RP )0 hop — K™ Bpidiuhuia

+ 38 (WP Bhy) — §Uahu )0 h — (Bh™™ — 8% )8, hy) .

(7.153)

apphied to the first-order perturbation h :,'L:. There are no cross lerms, as they would
necessarily be higher order.
Now let's write the vacuum equation as G, = (; this is of course equivalent
o i, = 0, but will enable us to express the result in a suggestive form, At
second order we have
R — 307 RENAP Inuy = 87 Gt (7.154)

v z

where we have defined

- s"?lE RO K]~ ;:qm RO b, (7155)
Notice a couple of things about this expression. First, we have not included terms
of the lorm h'ee RE.-,.'IJ!”‘ |, since R:,Iii'[hml = 0. Second, the left-hand side of
(7.154) is not the full sccond-order Einstein tensor, as we have moved terms in-
volving R:ﬁ?ih” '] to the right-hand side and provocatively relabeled them as an
energy-momentum tensor for the first-order perturbations, f,,. Such an identifi-
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cation seems eminently reasonable; £, 1s a symmetric tensor, quadratic in b,
which represents how the perturbations affect the spacetime metric in just the way
that a matier energy-momentum tensor would, (Linear terms in by, have no ef-
fect, since E}‘jxl,’.H:‘ D] is simply set 1o zero by the first-order equation.) Notice that
fuw is also conserved, in the background flat-spuce sense,

dutt =10, (7.156)

which we know from the Bianchi identity o, G*" = (.

Unfortunately there are some limitations on our interpretation of 1,, as an
energy-mementum tensor. OF course it is not a tensor at all in the full theory, bu
we gre leaving that aside by hypothesis. More importantly, it is not invariant un-
der gauge transformations {imfinitesimal diffeomorphisms), as you could check
by direct calculation, One way of circumventing this difficulty Is to average the
energy-momentum lensor over several wavelengths, an operation we denote by
angle brackets {- - -}, This procedure has both philosophical and practical advan-
tages. From a philosophical viewpoint, we know that our ability to choose Rie-
mann normal coordinates at any one point makes it impossible to define a reliable
measure of the gravitational energy-momentum that is purely local (defined at
each point in terms of the metric and its first derivatives at precisely that point). If
we average over several wavelengths, however, we may hope to capture enough
of the physical curvature in a small region to describe a guuge-invariant measure.
From a practical standpoint, any terms that are derivatives (as opposed 1o products
of denivatives) will average to zero,

(du(X)) = 0. (7.157)
We are therefore empowered 1o integrate by parts under the averaging brackets,
(A(d, B)) = —((8,A)B), (7.158)

which will greatly simplify our expressions.

With this in mind, let us caleulate 1, as defined in (7.155), using the expres-
sion {7.153) for the second-order Ricei tensor, (Henceforth we will no longer use
superseripts on the metric perturbation, as we will only be interested in the first-
order perturbation.) Although part of the motivation for averaging is o obtain a
gauge-invariant answer, the actual caleulation is a mess, so for illustrative pur-
poses we will carry it out in transverse-traceless gauge,

#ET 0 AT =0, (7.159)

fIRt +

Don’t forget that we are only allowed to choose this gauge in vacuum, The non-
i = ol 2)TT - : :
vanishing parts of R, in this gauge can be written as

Rii?ﬂ = %h."]’q— B r'h.hrl - A{EIJ,hEHiUHﬁ — 3‘2-:;“"'15;*’ I:I,}. }thm

L R8P hy L — hERapduhl, + ShTiadahl . (7.160)
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Now let’s apply the averaging brackets, and integrate by parts where convenient.
The last three terms in (7.1607 all go away, as integration by parts leads o diver-
gences that vanish. We are left with

HY

RIITT) B, RET) + 207 (O T THRTY (7.161)
(RET) =4 ')

But the perturbation obeys the first-order equation of motion, which sets C.‘:H =
(1. So we are finally left with

(RAT) = — 3 (0T @HET). (7.162)

We can take the trace to get the curvature scalar; after integration by parts we
again find a | I.JITr term which we set to zero, 50

( pv R:.ﬂ"r} - 0. (7.163)

ey

These expressions can be inserted into (7.155) to obtain a simple expression for
the gravitational-wave energy-momentum tensor in transverse-traceless gauge:

| |
= TG (@unED @) (7.164)

Remember that, in this gauge, nonspatial components vamsh, I:E,'L,T = 0. You will
therefore sometimes see the above expression written with spatial indices #j in-
stead of spacetime indices po; the two versions are clearly eguivalent. If we had
been strong enough 10 do the corresponding calculation without first choosing a
gauge, we would have found

1 v 1, .
F‘”l- = —:'!IEZ‘TG({HMI‘:'G”JEE}!JEF? )= E{fi;ih“‘-il'h}'

— (Bh®P ) Bk} — (070 HBuhing :), (7.163)

A bit of straightforward manipulation suffices to check that this expression is
actually gauge invariant, as you are asked to show in the exercises.
Let’s calculate the transverse-traceless expression (7.164) for a single plane
wave,
W'l = Csin(ix®). (7.166)

v
We have taken the real part and set the phase arbitrarily so that the wave is a sine
rather than cosine. The energy-momentum tensor is then

"u y =

o GL#L 4Cpa CF° (m (kax :) (7.167)
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Averaging the cos” term over several wavelengths yields

(costtxt)) = 1. (7.168)
For simplicity we can take the wave to be moving along the z-axis, so that

ki o= (=, 0,0, w) (7.169)
the minus sign coming from lowering an index on &%, and from (7.109),

CoaCP® = 2(h2 + A1), (7.170)

[t 15 more common in the gravitational-wave Dterature o express observables in

terms of the ordinary frequency f = /2, rather than the angular frequency e,
Putting it all wogether reveals

1 0 0 =]
w b AR T 2 () (1 '[} {

fyp = 'E—G_,f ”I-i- = Frz}l 0 00 0 f?l?”
-1 0 0 1

As we will discuss in the next section, typical gravitational-wave sources we
might expect 1o observe at Earth will have (requencies between 107 and 10° Hz,
and amplitudes h ~ 107, [t is therefore useful to express the energy flux in the
z direction, —To;, at an order-of-magnitude level as

7 i 3
” g f FNT(hL +RY) erg :
M ARSPNRE, | et (e (e L L S - 7.172

s (Hz) (10312 em? -5 ¢ J

This is the amount of energy that could in principle be deposited in cach square
centimeter of a detector every second. As pointed out by Thorne,* this is actually
a substantial energy flux, especially at the upper end of the frequency range. For
comparison purposes, a supernova at cosmological distances is characterized by
a peak electromagnetic Alux of approximately 1077 erg/em?fs; the gravitational-
wave signal, however, only lasts for milliseconds, while the visible electromag-
netic signal extends for months,

Now let’s use our formula for the gravitational-wave energy-momentum tensor
to calculate the rate of energy loss from a system emitting gravitational radiation
according to the quadrupole formula (7. 14(). The total energy contained in grav-
itational radiation on a surlace £ of constant time is defined as

I =f tood x, (7.173)
x

while the total energy radiated through to infinity may be expressed as

YRS, Thome, in Three Handred Years of Gravisation, Cambridge: Combridze University Press, 1987
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é.E:deL (7.174)
where the power s

F=f_ tun* rid Q. (7.175)
:

3
2

Here, the integral is taken over a two-sphere at spatial infinity S?,G and n® s a unit
spacelike vector normal to ‘:_E,L In polar coordinates {7, r, &, ¢}, the components
of the normal vector are

nt = (0, 1,0,0), (7.176)

We would like to caleulate the power £ using our expression for 1., (7.164),
The first issue we face s that this expression is written in terms of the transverse-
traceless perturbation, while the quadrupole formula (7.140) is written in terms
of the spatial components .‘_J;j of the Lorenz-gauge trace-reversed perturbation.
The simplest procedure (although it's not that simple) is to first convert ﬁ,-},- into
transverse-traceless gauge, which is permissible because we are interested in the
behavior of the waves in vacuum, far from the source from which they are emited,
plug into the formula for ¢, then convert back into nontransverse-traceless form.
Let’s sce how this works.

We begin by intreducing the (spatial) projection tensor

Pij =& —myny, (7.177)

which projects tensor components into a surface orthogonal 10 the onit vector
n'. (See Appendix D for more discussion.) In our case, we choose n to point
along the direction of propagation of the wave, so that Py; will project onto the
two-sphere at spatial infinity. We can use the projection tensor 10 consiruct the
transverse-traceless version of a symmetrie spatial tensor X, via

XIT = (P,-*Pf ~ $P P Xy, (7.178)
You can check for yourself that X;-';i' is indeed transverse and traceless. Because

it is traceless, £/ is equal to the original perturbation hlT; plugging into the
quadrupole formula (7.1400, we get

2 dt T
#:ET - .l:r-';r == T*;u _— (7.179)

where the transverse-traceless part of the quadrupole moment is also constructed
via (7.178). In fact the quadrupole moment defined by (7.138) is not the most
convenicnl quantity to use in expressing the generated wave, as it involves an
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integral over the energy density that might be difficult 1o determine. Insiead we
can use the reduced guadrupole moment,

Jij = 1jj — !1"3=1"'SH Iys (7.180)

which is just the traceless part of [;;. The reduced quadrupole moment has the
nice property of being the coefficient of the = term in the multipole expansion
of the Newtonian potential,

GM G . 3G

®=——— = Dix' -
= P T

rs.f”t’l‘l-'-—---, (7.181)
and is therefore more readily approximated for realistic sources. (Here Dy is the
dipole moment, ); = [ %% 4% v ) Of course, the transverse-traceless part of
the quadrupele moment is the same as the transverse-traceless part of the reduced
{that is, traceless) quadrupole moment, so (7.179) becomes

26 cz‘ J’TT
1T ) _
!” == d*’ —(t =71}, (7.182)
To calculate the power, we are interested in foun® = fg,. Because the

guadrupole moement depends only on the retarded time 7, = ¢ — r, we have

. 43 1T
r']uh;r;-] = Eddjf
r I
T 36 d° J&T 20 f.f‘?JJT
ey =g T B A
26 4}

roodi?

(7.183)

&

2 . .
where we have dropped the r== term hecause we are interested in the r — oo
limit. The important component of the energy-momentum tensor is therefore

& fﬁ*" a3 J
= —_r : 7.184
"o Bmrl <( dr ci.r- (1840

The next step is to convert back Lo J;; from the transverse-traceless part. Applying
(7.178) and some messy algebra, it is straightforward 1o show that

XPX.EI{F — XJ-I-Xf-j - EX;'JXIIJ]‘;F!* + %XUXHH,-HJ:HW; - %X: -+ XX”H,'H_,;.
(7.183)

where X = 6" X,;. Because Jj; is traceless, we have

JPJ-?E = Jy I - 2.-‘,‘1..;:‘-’?','!1,1- - %h-"'-’;.i‘“a':,lliJrlj‘-m~ (7.186)
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and the power is

{:f (d‘.:,-jd-‘.f"i Jd2 il dd
5

P= = = e st S ;
a7 drd  di dry s AT
0 R o i
+ E;‘f_:*_ }—E-:,.—Fil'ﬂjﬂkﬂf>dﬂ. (7.187)

To evaluate this expression, it is best o switch back o Cartesian coordinates in
space, where n' = x'/r. The quadrupole tensors are independent of the angular
coordinates, since they are defined by integrals over all of space. We may therefore
pull them owside the integral, and use the identities

fdﬂ=4n

qT
fn,'n;- d8 = —d;;

3
4 ) d
fu,rr,.nw;dﬁ = -ﬁ{:ﬁ,jék; + Skl ji + Biid ). (7.188)
When all 15 said and done, the expression for the power collapses o
P e T g (7.189)
= s\ e ar | R

where we should remember that the quadrupole moment is evaluated at the re-
tarded time t, = t — r. Cur formula has a minus sign because it represents the rate
at which the energy is changing, and radiating sources will be losing energy.

For the binary system represented by (7.148), the reduced quadrupole moment

is
MR? {1+ 3cos28r) dsin 282 0
Jij = 3 ( Fan 28k (1 —3cos28) 0O ) . (7.190)
] ] -2
and its third time derivative is thereflore
el sin 262 —cos28r 0
5 =SMRQ’ ( ~cos2Qt  —sin 20 u) (7.191)
¥ ] 0 0
The power radiated by the binary is thus
128 §
P=——GMR'Q, (7.192)
or, using expression (7,144) for the frequency,
2 GIM?
p— : {7.193)

E
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OF course, energy loss through the emission of gravitational radiation has been
observed. In 1974 Hulse and Taylor discovered a hinary system, PSR1913+16, in
which both stars are very small, so classical effects are negligible, or at least under
control, and one is a pulsar. The period of the orbit is eight hours, extremely small
by astrophysical standards. The fact that one of the stars 15 2 pulsar provides a very
aceurate clock, with respect to which the change in the period as the system loses
energy can be measured. The result is consistent with the prediction of general
relativity for energy loss through gravitational radiation,

DETECTION OF GRAVITATIONAL WAVES

One of the highest-priority goals of contemporary gravitational physics and as-
trophysics is 1o deteet gravitational radiation directly. (By direct we mean “by
ohserving the influence of the gravitational wave on test bodies,” in contrast to
observing the indirect cffect of energy loss, as in the binary pulsar.) There is every
reason o believe that such a detection will happen soon, either in already-existing
gravitational-wave observatories or those being planned for the near future. Once
we detect gravitutional radiation, of course, the goal will immediately become 10
extract useful astrophysical information from the observations, Our current under-
standing of the universe omside the Solar System comes almost exclusively from
observations of electiromagnetic radiation, with some additional input from neu-
trinos and cosmic rays; the advent of gravitational-wave astrophysics will open an
entirely new window onto energetic phenomena in the distant universe.

Before discussing how we might go about detecting astrophysical gravitational
waves, we should think about what sources are likely o be most readily observ-
able. The first important realization is that the necessary conditions for the gener-
ation of appreciable gravitational radiation are very different from those for elec-
tromagnetic radiation. The difference can be traced to the fact that gravitational
waves are produced by the bulk motion of large masses, while electromagnetic
waves are produced (typically) by incoherent excitations of individual particles,
Electromagnetic radiation can therefore be produced by a source that 1s static in
bulk. such as a star. which 15 a substantial advantage to the astronomer. However,
gravitational waves are produced coherently by large moving masses (every par-
ticle in the mass contributes in the same sense o the wave), which can partially
compensate for the impossibility of emission from static sources.

We therefore need massive sources with substantial bulk motions. As a simple
example, consider the binary system of Section 7.5, in which both stars have mass
M and the orbital radius is B, We will chear somewhat by applying the Newtonian
formulae for the orbital parameiers in a regime where GR has begun e become
important, but this will suffice for an order-of-magnitude estimate. The relevant
parameters can be distilled down to the Schwarzschild radius Ry = 20M IJL'J.

SFor wn overview of gravitational-wave astrophvsics, see 5.4, Hughes, 5. Mirka, PL. Bender,
and C.J. Hogan, “New physics and astronomy with the new gravitational-wave observatories,”
htop://arxiv.org/astro-ph /0110349,
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the orbital radius R, and the distance r between us and the binary. { We will now
restore explicit factors of ¢, (o facilitate comparison with experiment. ) In terms of
these, the frequency of the orhit and thus of the produced gravitational waves is
approximately

i
0 ek

From the formula (7.149) for the resulting perturbation, we can estimate the
gravitational-wave amplitude received as
2
gty (7.195)
rR
Let's see what this implies for the Kind of source we might hope 1o observe, A
paradigmatic example is the coalescence of a black-hole/black-hole binary, For
typical parameters we can take both black holes to be 10 solar masses, the binary
to be at cosmological distances ~ 100 Mpe, and the components 1o be separated
by ten times their Schwarzschild radii:

Rg ~ 108 ¢m
R ~ 10" em
r~ 10% ¢m, (7.196)
Such a source is thus characterized by
f~10*s1, h~ 1072, (7.197)

If we are o have any hope of detecting the coalescence of a binary with these
parameters, we need (o be sensitive (o frequencies near 100 Hz and strains of
order 1072 or less.

Fortunately. these parameters are within the reach of our experimental capa-
bilities (with the heroic efforts of many scientists). The most promising technigque
for gravitational-wave detection currently under consideration is interferometry,
and here we will stick exclusively o a discussion of interferomelters, although it
15 certainly conceivable that a new technology could be invented that would have
better sensitivity,

Recall that the physical effect of a passing gravitwtional wave is (o slightly per-
turb the relative positions of freely-falling masses. If two test masses are separated
by a distance L, the change in their distance will be roughly

I‘ ~ k. (7.198)

Imagine that we contemplate building an observatory with test bodies separated
by some distance of order kilometers. Then to detect a wave with amplitude of
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order h ~ 10~2! would require a sensitivity to changes of

h L
~16

Compare this to the size of a typical atom, set by the Bohr radius,
ag~ 5 x 10~ em, (7.200)
or for that matter the size of a typical nucleus, of approximately a Fermi,
1fm=10""cm. (7.201)

The point we are belaboring here is that a feasible terrestrial gravitational-wave
observatory will have to be sensitive to changes in distance much smaller than
the size of the constituent atoms out of which any conceivable test masses would
have 1o be made.

Laser interferometers provide a way to overcome the difficulty of measuring
such miniscule perturbations. Consider the schematic set-up portrayed in Fig-
ure 7.11. A laser (typically with characteristic wavelength & ~ 10~ cm) is di-
recled at a beamspliver, which sends the photons down two evacuated tubes of
length L. At the ends of the cavilies are test masses, represented by mirrors sus-
pended from pendulums. The light actually bounces off partially-reflective mir-
rors near the beamsplitter, so that a typical photon travels up and down the cavity

mirvor HEEEE_
L
mirror LEE.'.'_L . }
mirror mirror
[ | 1 |
Lz ]

FIGURE 7.11 A schematic design for a gravitational-wave interferometer.
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of order 100 times hefore returning o the beamsplitter and being directed into
a photadiode. The system is arranged such that, if the test masses are perfectly
stationary, the returning beams destructively interfere, sending no signal 1o the
photodiode. As we have seen, the effect of a passing gravitational wave will be
to perturb orthogonal lengths in opposite senses, leading to a phase shift in the
laser pulse that will disturb the destructive interference. During 100 round trips
through the cavity arms, the accumulated phase shift will be

S ~ 200 (2_1) L~ 1077, (7.202)
A

where 200 rather than 100 represents the fact that the shifts in the two arms add

together. Such a tiny shift can be measured if the number of photons &V is sulfi-

ciently large to overcome the “'shot noise™ in particular, if /N > 3¢,

The technological challenges associated with building sufficiently gquiet and
sensitive gravitational-wave observatories are being tackled in a number of dif-
ferent locations, including the United States (L1GO), ltaly (Virgo), Germany
(GEO). Japan (TAMA). and Australia (ACIGA). LIGO (Laser Interferometric
Gravitational-Wave Observatory) is presently the most advanced detector; it con-
sists of two facilities (one in Washington stat¢ and one in Louisiana), each with
four-kilometer arms. A single gravitational-wave observatory will be unable to
localize a source's position on the sky: multiple detectors will be crucial for this
task (as well as for verifying that an apparent signal is actually real).

Fundamental noise sources limit the ability of lerrestrial observatories to de-
teet low-frequency gravitauonal waves. Figure 7.12 shows the sensitivity regions,
as a function of frequency, for two dramatically different designs: a terrestrial
observatory such as LIGO, and a space-based mission such as LISA (Laser In-
terferometer Space Antenna). The general principle behind LISA is the same as
any other mierferometer, but the implementation is (or will be, if it is actually
built) dramatically different. Current designs envision three spacecrafi orbiting
the Sun at approximately 30 million kilometers behind the Earth, separated from
each other by 5 million kilometers. Due (o the much larger separations, LISA is
sensitive to frequencies in the vicinity of 107 Hz. The sensitivities portrayed in
this plot should be taken as suggestive, as they depend on integration times and
other factors,

Many potential nomse sources confront the gravitational-wave astronomer. For
ground-based observatories, the dominant effect at low frequencies is typically
seismic noise, while at high frequencies it comes from photon shot noise and at
intermediate frequencies from thermal noise. Advanced versions of ground-based
detectors may be able to compensate for seismic noise at low frequencies, but will
encounter irreducible noise from gravity gradients due 1o atmospheric phenomena
or objects (such as cars) passing nearby. Satellite observatories, of course, are
immune from such effects. Instead, the tundamental limitations are expected to
come from errors in measuring changes in the distances between the spacecraft
(or more properly, between the shielded proofl masses within the spaceeraft) and
trom nongravitational accelerations of the spacecraft,
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FIGURE 7.12 Sensitivities as a function of frequency for representative ground-based
(LIGO) and space-based (LISA) gravitational-wave observatories, along with the ex-
pected signals from possible sources. Figure from the LISA collaboration home page
(http://lisa. jpl.nasa.gov/).

We can conclude with a very brief overview of possible sources for gravi-
tational-wave observatories. We have already mentioned the possibility of com-
pact binaries of various sorts. For ground-based observatories, such sources will
not become visible until they are very close to coalescence, and then only if the
components are sufficiently massive (neutron stars or black holes). Extrapolating
from what we know about such systems suggests that there may be several coa-
lescences per year within a distance of a few hundred Mpe. Another promising
possibility is core collapse in massive stars, giving rise to supernovae. Although
a perfectly spherically-symmetric collapse would not generate any gravitational
waves, realistic events are expected to be subject to instabilities that would break
this symmetry. An exciting prospect is the coordinated observation of supernovae
by ordinary telescopes and gravitational-wave observatories. Lastly, among pos-
sible sources for ground-based observatories are periodic sources such as (not-
completely-axially-symmetric) rotating neutron stars. The amplitudes from such
sources are expected 1o be small, but not necessarily completely out of reach of
advanced detectors,

The interesting sources for space-based detectors are somewhat different. Most
importantly, the known population of binaries in our galaxy will certainly provide
a gravitational-wave signal of detectable magnitude. Indeed, unresolved binaries
represent a source of confusion noise for the detector, as it will be impossible to
pick out individual low-intensity sources from the background. Nevertheless, nu-
merous higher-intensity sources should be easily observable. In addition, various
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processes in the evolution of supermassive black hoeles (greater than 1000 Mg,
such as those found in the centers of galaxies) lead to interesting sources: the for-
mation of such objects. their subsequent growth via accretion of smaller objects,
and possible coalescence of multiple supermassive holes. Tracking the evolution
of the gravitational-wave signal from a solar-mass black hole orbiting and even-
tually falling into a supermassive hole will allow for precision mapping of the
spacetime metric, providing a novel test of GR.

In addition to waves produced by localized sources, we also face the possibility
of stochastic gravitational-wave backgrounds. By this we mean an isotropic set of
gravitational waves, perhaps generated in the early universe, characterized by a
smoothly-varying power spectrum as & function of frequency, One possibility is
a nearly scale-free spectrum of gravitational waves produced by inflation, as dis-
cussed in Chapter 8. Such waves will be essentially impoessible o detect directly
on the ground (falling perhaps five orders of magnitude below the capabilitics
of advanced detectors), or even by LISA, bul could conceivably be observable
by a next-generition space-based mission. More likely, any such waves will first
become manifest in the polarization of the cosmic microwave background. An-
other possibility. however, is generation of primordial gravitational waves from
a violent (first-order) phase transition. Such waves will have a spectrum with a
well-defined peak frequency, related to the emperature T of the phase ransition
by

. i
foeax ~ 107 ( 1’{){?}135\?) Hz. (7.203)

Thus, a first-order electroweak phase transition (I =~ 200 GeV) falls within the
band potentially observable by LISA. This is especially intriguing, as some mod-
els of baryogenesis require a strong phase transition at this scale; it is provoca-
tive 1o think that we could learn something significant about electroweak physics
through a gravitational experiment,

7.6 W EXERCISES

1. Show that the Lagrangian (7.9) gives rise 1o the lincarized version of Einstein's equa-
fon.

2, Consider a thin spherical shell of mauer, with mass M and radius R, slowly rotating
with an angular velocity £2.

{a) Show that the gravito-gleciric field G vanishes, and calculate the gravilo-magnetic
field H interms of M, &, and £,

(b) The nonzero gravito-magnetic field caused by the shell leads 1o dragging of iner-
tial frames, known as the Lense=Thirring effect. Calculate the rotation (relative
to the inertial frame defined by the backpround Minkowski metric) of a freely-
falling observer sitting at the center of the shell. In other words, calculate the
precession aof the spatial components of a parallel-transported vector located at
the center.
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Fermat's principle stares that a lght ray moves along a path of least time. For o medium
with refractive index n{x), this is cquivalent to extremizing the time

r= f ()8 x’ dxd 112 (7.204)

along the path, Show that Fermat's prineiple, with the refractive index given by n =
| = 2eb, leads to the correct equation of motion for a photon in a spacetime perturbed
by a Newtonian potential.

Show that the Lorenz gauge condition il,#*Y = 0 is eguivalent to the harmonic
gauge condition. This gauge 15 defined by

Clak =10, (7.205)

where each coordinate v ix thought of as a scalar function on spacetime. (Any func-
tion satisfying ) f = 0 is known as an “harmonic function.”)

In the exercises for Chapter 3, we introduced the metric
.rJ'.'.': = —{dndv +dvdu) + azmjd.xz + {rztra}d_','z. {7.2006)

where ¢ and b are unspecified functions of . For appropriate functions a and b, this

represents an exact gravitational plane wave.

(a) Caleulate the Christoffel symbaols and Riemann tensor for this metric.

(b) Use Einstein’s equation in vacuum to derive equations obeyed by a(u) and blu).

(e} Show that an exact solution can be found, in which both @ and b are determined
in terms of an arbitrary function f ().

Two objects of mass M have a head-on vollision at event (0,0, 0, 0). In the distant
past, t — —o0, the masses started at ¥ — $00 with rero velocity.

(a) Using Newtonian theory, show that x{f) = :{BPMlzfﬁjlf'?'.

ib) For what separations is the Newtonian approximation reasonable?

(e} Caleulate ,'ril_rri.r} at (x, v, 2 = (0, R, 0).

Gravitational waves can be detected by monitonng the distance between two free fly-
g masses. [ one of the masses is equipped with a laser and an accurate clock, and the
other with a good murror, the distance beiween the masses can be measured by timing
how long it takes for a pulse of laser light to make the round-trip journey. How would
vou want your detector oriented Lo register the largest response from a plane wave of
the form

de? = —dt? + [l + Acosiwir — :_j:ld_a.': + |1 — Acosiait — ;:]]_ld_'y2 +dz®?

If the masses have a mean separation L, what 15 the largest change in the arrival time
of the pulses caused by the wave? What frequencies e would go undetected?

The gravitational analog of bremssirahlung radiation is produced when two masses
scatier off each other. Consider what happens when a small mass m scatlers off a
large mass M with impact parameter & and 1ol energy £ = 0. Take M % m and
M/ < 1. The motion of the small mass can be deseribed by Newtonian physics,
since M/b < 1. If the orbit lies in the (v, ) plane and if the large mass sits al
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(x, v.2) = (0.0, 0}, calculate the gravitational wave amplitude for both polarizations
at (x, v, 2} = (0,0, r). Since the motion is not periodic, the gravitational waves will
be burst-like and composed of many different frequencies. On physical grounds, what
do you gxpect the dominant frequency to be? Estimate the total energy radiated by the
system, How does this compare to the peak Kinetic energy of the small mass?

Hinr: The solution for the arbit can be found in Goldstein (2002), The solution is:

2b

"= 1+ cosé’

r [2b3 (m A" 15)
=, — (tan=+ =tan” = |.
VM 2 ¥ty
Time runs from 1 = {(=oc, o¢). Rather than using the above implicit solution for &ir)
you might want 10 use

b= L )’

= — (LY L

vV gpl

9. Verify that the expression (7.165) for the gravitational-wave energy-momentum tensor
is invariant under gauge transformations fr, == fy, + 20, -

10. Show that the integral expression (7.173) for the total energy in gravitational pertur-
bations is independent of the spatial hypersurface £,
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Cosmology

8.1 B MAXIMALLY SYMMETRIC UNIVERSES

Contemporary cosmological models are based on the idea that the universe is
pretty much the same everywhere—a stance sometimes known as the Copernican
principle. On the face of i, such a claim seems crazy; the center of the sun,
for example, bears little resemblance o the desolate cold of interstellar space.
But we take the Copernican principie to apply only on the very largest scales,
where lecal variations in density are averaged over. [ts validity on such scales
is manifested in a number of different observations, such as number counts of
galaxies and observations ol diffuse X-ray and y-ray backgrounds. but is most
clear in the 3K cosmic microwave background (CMB). Although we now know
that the microwave background radiation is not perfectly smooth (and nobody
ever expected that it was), the deviations from regularity are on the order of 1077
or less, certainly an adequate basis for an approximate description of spacetime
on large scales.

The Copernican principle is related to two more mathematically precise prop-
erties that a manifold might have: isotropy and homogeneity. Isotropy applies
at some specific point in the manifold, and states that the space looks the same
no matter in what direction you look. More formally, a manifeld M is isetropic
around a point p if, for any two vectors V oand W in T, M, there is an isometry
of M such that the pushforward of W under the isometry is parallel with V' (not
pushed forward). It1s isotropy of space that s indicated by the observations of the
microwave background.

Homogeneity is the statement that the metric is the same throughout the man-
ifold. In other words, given any two points p and ¢ in M, there is an isometry that
takes ponlo g, Mote that there is no necessary relanonship between homogene-
ity and isotropy; a manifold can be homogeneous but nowhere isotropic (such as
R x §% in the usual metric), or it can be isotropic around a point without being
homogeneous (such as a cone, which is isotropic around its vertex but certainly
not homogeneous). On the other hand, if a space is isotropic everywhere, then it
is homogeneous. Likewise il it is isotropic around one point and also homoge-
neous, it will be isotropic around every point, Since there is ample observational
evidence for isotropy, and the Copernican principle would have us believe that we
are not the center of the universe and therefore observers elsewhere should also
observe isotropy. we will henceforth assume both homogeneity and isotropy.

323
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The usefulness of homogeneity and isotropy is that they imply that a space is
maximally symmetric, Think of isotropy as invariance under rotations, and homo-
genetly as invarance under translations, suitably generalized. Then homogeneity
and isotropy together imply that a space has its maximum possible number of
Killing vectors, An extreme application of the Copernican principle would be (o
insist that spacetime iself is maximally symmetric. In fact this will turn out not to
be true; observationally we know that the universe 1s homogeneous and 1sotropic
in space, but not i all of spacetime. However, 1t is interesting to begin by con-
sidering spacetimes that are maximally symmetric (which are, after all, special
cases of the more general situation in which only space is maximally symmetric),
As we shall see, there is a sense in which such universes are “ground states™ of
general refativity. This discussion is less relevant o the observed universe than
subsequent parts of this chapier, and empirically-minded readers are welcome o
skip ahead to the next section.

We mentioned in Chapter 3 that the Riemann tensor for a maximally symmetrie
ni-dimensional manifold with metric g, can be written

Rﬁa;:r = Kl Zouavy — Bpulauls (8.1)

where & is a normalized measure of the Ricci curvature,

R
= — — g2
o nin—1) )

and the Ricer scalar B will be a constant over the manifold. Since at any single
puint we can always pul the metric into its canonical form (g, = 9,0}, the kinds
of maximally symmetric manifolds are characterized locally by the signature of
the metric and the sign of the constant . The modifier “locally™ 1s necessary to
account for possible global differences, such as between the plane and the torus,
We are interested in metrics of signature (— -+ 4+ ). For vanishing curvature (k =
0) the maximally symmetric spacetime is well known; it is simply Minkowski
space, with metric

ds® = —dr® + dx? + dy? + 2% (8.3}
The conformal diagram for Minkowski space is derived in Appendix H,
The maximally symmetric spacetime with positive curvature (& = (0} is called

de Sitter space. Consider a five-dimensional Minkowski space with metrie d:.‘;?' =
—du? +da? + dy* 4 dz? + dw?, and embed a hyperboloid given by

w4+ y + it ul =l (8.4)
Now induce coordinates {1, x, #, ¢] on the hyperboloud via
1 = e sinh(r o)

w =g cosh(! fer)cos x
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x =wcosh(r/a)sin g costl

v =g cosh(r/c)sin ¥ sin# cosd

z = ecoshis /o) sin ¥ sind sin g, (8.5)
The metric on the hyperboloid is then
ds? = —dr? + o? {:m;hzu,i:r) [dx'? + sin® );‘[dn'.-}3 + sin? £!EI¢11] = (5.6)

W n.u'-gnin, the L\ipﬂ:x&.iun in round parentheses as the metric on a two- M[Jht'l’ﬁ
d 23, and the expression in square brackets as the metric on a three-sphere, :fﬂ,
Thus, de Sitter space describes a spatial three-sphere that initially shrinks. reach-
mg a minimum size at 1 = (], and then re-expands, OF course this particular
description is inherited from a certain coordinate system: we will see that there
are equally valid alternative descriptions.

These coordinates cover the entire manifold. You can generally check this by,
for example, following the behavior of geodesics near the edges of the coordinate
system; if the coordinates were incomplewe, geodesics would appear 10 terminate
in finite affine parameter. The 1opology of de Sitter is thus R x $7. This makes
it very simple to derive the conformal diagram, since the important step in con-
structing conformal diagrams is to write the metric in a form in which it 1s confor-
mally related to the Einstein static universe (a spacetime with topology R x 57,
describing o spatal three-sphere of constant radivs through time), Consider the
coprdinate transtormation from ¢ 1o+ via

coshir fe) = —, (8.7)
cos(d’)
The metric (8.6) now becomes
2
e
d5* = e (8.8)
cos=(1)
where di’ represents the metric on the Einstein static universe,
=2 M2 2 22 2
d5° = —(dt')" +dx* +sin” y d925. (8.9)
The range of the new time coordinate is
-7/2 <t < r/2. (8.1

The conformal diagram of de Sitter space will simply be a representation ol the
patch of the Einstein static universe to which de Sitter is conformally related.
It looks like a square, as shown in Figure 8.1, A spacelike shice of constant 1
represents a three-sphere; the dashed lines at the left and right edges are the north
and south poles of this sphere. The diagonal lines represent null rays: a photon
released ar past infinity will get 1o precisely the antipedal point on the sphere at
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future infinity. Keep in mind that the spacetime “ends” to the past and the future
only through the magic of conformal transformations; the actual de Sitter space
extends indefinitely mto the future and past. Note also that two points can have
future (or past) light cones that are completely disconnected; this reflects the fact
that the spherical spatial sections are expanding so rapidly that light from one
point can never come into contact with light from the other.

A similar hyperboleid construction reveals the ¥ < 0 spacetime of maximal
symmetry, known as anti-de Sitter space. Begin with a fictitious five-dimensional
flal manifold with metric ds2 = —du? — dv? + dx2 + dy? + dz2, and embed a
hyperboleid given by

2 -I:*.l'3+_'h':‘1'.-_"3 = —a’. (8.11)
Note all the minus signs. Then we can induce coordinates (¢, o, #, ¢} on the
hyperboloid via

o= sl veoship)
v = g cos(t') coship)
x = @sinh{p)cost

¥

Il

w sinh( ) sin ¢ cos ¢
2 =g sinh{p)sint sing, (8.12)

yielding a metric on this hyperboloid of the lorm
ds® = uj[ — cash®(p)de”? + dp® + sinh’(p) dﬂi}. {8.13)

These coordinates have a strange feature, namely that 1 is periodic. From (8.12).
¢ and ¢' + 2 represent the same place on the hyperbolowd. Since 8 is everywhere
timelike, a curve with constant {p, #, ¢| as 1" increases will be a closed timelike
curve. However, this is not an ininnsic property of the spacelime, merely an ar-
tifact of how we have derived the metrie from a particular embedding. We are
welcome to consider the “covering space”™ of this manifold, the spacetime with
metric given by (8.13) in which we allow 1" to range from —o¢ 10 o, There are
ne ¢closed timelike curves in this space, which we will take 1o be the definition of
anti-de Sitter space.

To derive the conformal diagram, perform a coordinate transformation unalo-
gous 1o that used for de Siter, but now on the radial coordinate:

1
coshipg) = . (8.14)
Cos ¥
50 that
ds? = =452 (8.15)
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anti-de Sitter

t=0

x—[} X= 5

FIGURE 82 Conformal diagram for anti-de Sitter spacetime. Spacelike slices have the
topology of R, which we have represented in polar coordinates, so that points on the
diagram stand for twoe-spheres except those at the left side, which stand for single points at
the spatial origin. Infinity is a timelike surface at the right side.

where d5° represents the metric on the Einstein static universe (8.9), Unlike in
de Sitter, the radial coordinate now appears in the conformal factor. In addition,
for anti-de Sitter, the 1" coordinate goes from minus infinity to plus infinity, while
the range of the radial coordinate is

a
0sx <z

(8.16)
Thus. anti-de Sitter space 1s conformally related to half of the Einstein static uni-
verse. The conformal diagram is shown in Figure 8.2, which illustrates a few
representative timelike and spacelike geodesics passing through the point +* = 0,
o = 0. Since ¥ only goes to 7/2 rather than all the way 1o 7, a spacelike slice
of this spacetime has the wpology of the interior of a hemisphere of §*: that is,
it is wopologically R? (and the entire spacetime therefore has the topology R*Y).
Note that we have drawn the diagram in polar coordinates, such that a point on
the left side represents a point at the spatial origin, while one on the right side rep-
resents a two-sphere at spatial infinity. Another popular representation is to draw
the spacetime in cross-section, so that the spatial origin lies in the middle and the
right and left sides together comprise spatial infinity.

An interesting feature of anti-de Sitter is that infinity takes the form of a time-
like hypersurface, defined by y = /2. Because infinity is tmelike, the space
is not globally hyperbolic, we do not have a well-posed initial value problem in
terms of informantion specified on a spacelike shice, since information can always
“flow in from infinity.”” Another interesung feature is that the exponential map is
not onto the entire spacetime; geodesics, such as those drawn on the figure, which
leave from a specified point do not cover the whole manifold. The future-pointing
timelike geodesics, as indicaled, can initially move radially outward from ¢ = 0,
» = 0, but eventually refocus to the point 1 = 7, y = 0 and will then move
radially outward once again.
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As an aside, it is irresistible o point out that the timelike nature of infinity en-
ables a remarkable feature of siring theory, the "AdS/CEFT correspondence.” Here,
AdS 15 of course the anti-de Sitier space we have been discussing, while CFT
stands for a conformally-invariant ficld theory defined on the boundary [which is.
for an n-dimensional AdS, an (n— 1 )-dimensional spacetime in its own right]. The
AdS/ICFT correspondence suggests that, in a certam limit, there is an equivalence
between quantum gravily (or a supersymmetric version thereofl) on an AdS back-
ground and a conformally-invariant nongravitational field theory defined on the
boundary. Since we Know a Lol about nongravitational gquantum field theory that
we don’t know about gquantum gravity, this correspondence (if it is true, which
seems likely bul remains unproven) reveals a great deal about what can happen in
guantum oravity,!

So we have three spacetimes of maximal symmetry: Minkowski (¢ = 0),
de Sitter (x> (), and anti-de Sitter (« = (). Are any one of these useful models
for the real world? For that matter, are they solutions to Einstein’s equation” Start
by taking the trace of the Riemann tensor as given by (8.1), specifying 1o [our
dimensions:

Ruiv=3%¢uy, R=]2r (8.17)

So the Ricei tensor is proportional to the metric in a maximally symmetric space,
A spacetime with this property is sometimes called an Einstein space; the Ein-
stein static universe is nor an example of an Einstein space, which can sometimes
be confusing. What is worse, we will later encounter the Einstein—de Sitter cos-
mology, which 1s not related o Einstein spaces, the Einstein static universe, or o
de Sitter space. The Einsiein tensor is

Guv = Ryuv — $Rguy = —3kgus- (8.18)

Therefore, Einstein's equation G, = 87 G T, implies (in a maximally symmet-
ric spacetime. not in general) that the energy-momentum tensor is proportional to
the metric:

3k

T,rn' = _ﬁgur- (8,19

Such an energy-momentum tensor corresponds (o a vacuum energy or cosmologi-

cal constant, as discussed in Chaprer 4. The energy density and pressure are given
by
Ak

8 G’

p==-p= (8.20)

If @ is positive, we get a de Sitter solution; if p 1s negative, we get anti-de Sitter.
But in our universe, we have ordinary matter and radiation, as well as a pos-

sible vacuum energy. Our maximally svmmelric spaceltimes are not compatible

'For a comprehensive review anticle, see 0. Aharony, 5.5, Gubser, LM, Maldacena, H. Oogur, and
Y. Oz, Phys. Repr 323, 183 (2000}, hevp: //arziv. org/hep-th/9905111
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with a dynamically interesting amount of matter and/or radiation. Furthermore,
since we observe the visible matier in the universe to be moving apart (the uni-
verse is expanding, as discussed below), the density of matter was higher in the
past; so even if the matier contribution to the (otal energy were negligible wday,
it would bave been appreciable in the ¢arlier universe. The maximally symmetric
spacetimes are therefore not reasonable models of the real world. They do. how-
ever, represent the (locally) unique solutions to Einstein’s equation in the absence
of any ordinary matter or gravitational radiation; 1t is in this sense that they may
be theught of as ground states of general relativity,

ROBERTSON-WALKER METRICS

To describe the real world, we are forced to give up the “perfect” Copernican prin-
ciple, which implies symmetry throughout space and time, and postulate some-
thing more forgiving. It turns oul 1o be straightforward, and consistent with ob-
servation, 1o posit that the universe 18 spatially homogeneous and isotropic, but
evalving in time. In general relativity this translates into the statement that the uni-
verse can be foliated into spacelike shices such that each three-dimensional slice
is maximally symmetric, We therefore consider our spacetime to be R x I, where
R represents the time direction and X is a maxirmally svmmetric three-manifold.
The spacetime metric thus takes the form

ds® = —dt? + RY(1)de?, (8.21)

where 18 the timelike coordinate, R(r) is a function known as the scale factor,
and do * is the metric on X, which can be expressed as

do” = yij(u)du'du’, (8.22)

where (1!, «*, u*) are coordinates on £ and yij is a maximally symmetric three-
dimensional metric. The scale factor tells us how big the spacelike slice & is at
the moment ¢. (Don™t confuse 11 with the curvature scalar.) The coordinates used
here, in which the metric is {ree of cross terms drdu' and coefficient of d® is
independent of the ', are known as comoving coordinates, a special case of the
Gaussian normal coordinates discussed in Appendix D, An observer who stays al
constant ' is also called “comoving.” Only a comoving observer will think that
the universe locks isotropic; in fact on Earth we are not quite comoving, and as a
result we see a dipole anisotropy in the cosmic microwave background as a result
of the conventional Doppler effect,

Our interest is theretore in maximally symmetric Euclidean three-metries 3.
We know that maximally symmetric metrics obgy

{3 . )
Riju = Hf"ri‘]f";f — Vi ¥ikh (8.23)
where for future convenience we have introduced

k= gse. (8.24)
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and we put a superseript ' on the Riemann tensor to remind us that it is associated
with the three-metric ;. not the metric of the entire spacetime. The Ricci tensor
is then

R = 2hyy. (8.25)

If the space is to be maximally symmetric, then it will certainly be spherically
symmetric. We already know something about spherically symmetric spaces from
our exploration of the Schwarzschild solution; the metric can be put in the form

do® =y du' du! = 0 d7? 4 F2d 0, (8.26)

where F is the radial coordinate and the metric on the two-sphere is dQ2? =
d6® + sin® 6 dgp” as usual. The components of the Ricei tensor for such a metric
can be obtained from (5.14), the Ricci tensor for a static, spherically symmetric
spacetime, by setting ¢ = Oand r = r, which gives

Bl B

Ry = B

-

DRy = e (g — 1)+ |
MRy = e~ P (Fo1 B — 1) + 1]sin? 6. (8.27)

We set these proportional to the metric using (8.23), and can solve {Gr £{r):
B =—1In(1l — ki, (8.28)
which yields the metric on the three-surface I,

; dr’ o = .
da® = — +7di. (8.29)
| —kr=
Notice from (8.24) that the value of & sets the curvature, and therefore the size, of
the spatial surfaces. U is commoen o normalize this so that

ke {+1,0,—1]. (8.30)

and absorb the physical size of the manifold into the scale factor Rir),

The & = —1 case corresponds to constant negative curvature on X, and is
sometimes called open; the & = 0 case corresponds to no curvature on Z, and
is called flat; the &k = +1 case corresponds 1o positive curvalure on £, and 18
sometimes called closed. The physical interpretation of these cases 1s made more
clear using an alternative form of the metriz, oblained by introducing o new radial
coordinate x defined by

dr

d' =
PR

(8.31)
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This can be integrated 1o obtain

F= Sc(x). (8.32)
where
sin{x), k=1
Se(x) =1 x. k=10 (8.33)
sinh(x), k= -1,
siv that

do® = dy® + S (x)d Q% (8.34)
For the flat case & = 0, the metric on £ becomes

do’ =dy?® + x2do?*
= dx? 4 dy* 4+ dz?, (8.35)

which is simply flat Euclidean space. Globally, it could describe R* or a more
complicated manifold, such as the three-torus §' x §' x S'. For the closed case
F = +1 we have

do® =dy? +sin? y dQ%, (8.36)

which is the metric of a three-sphere. In this case the only possible global structure
is the complete three-sphere (except for the nonorientable manifold RP?. obiained
by identifying antipodal points on $*). Finally in the open k = —1 case we obtain

do’ = dy? + sinh? x 4Q°. (8.37)

This is the metric for a three-dimensional space of constant negative curvature, a
gencralization of the hyperboloid discussed in Section 3.9. Globally such a space
could extend forever (which is the origin of the word “open™), but it could alse
describe a nonsimply-connected compact space (so “open” is really not the most
accurale description),

The metric on spacetime describes one of these maximally-symmetric hyper-
surfaces evolving i size, and can be written

s dr
ds® = —dr® + R¥(1) [ r_ _ + r-:m:] 3 (8.38)

This is the Robertson—-Walker [ RW) metric, We have not yvet made use of Ein-
stein’s equation; that will determine the behavior of the scale factor Rir). Note
that the substitutions
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I (8.39)

leave (8.38) invanant. Therefore we can cheose a convenient normalization. In
the variables where the curvature & 1s normalized to {+1, 0, —1}, the scale factor
has units of distance and the radial coordinate F (or ) is actuaily dimensionless;
this is the most popular choice. We will flout the conventional wisdom and instead
work with a dimensionless scale factor
aft) = EU :-. (8,407
Ry

a coordinate with dimensions of distance
r = Rof, (#.41)

and a curvature parameter with dimensions of (length) 2,

k

= —, (#.42)
.
Rg

K

Note that & can take on any value, not just {+1, 0, —1}. In these variables the
Robertson—Walker metric 18

d
— 4 mﬁ] . (8.43)
-

l—x

ds® = —di” + (.:Z{I]' [

To convert to the more common notation, just plug in the relations (8.40), (8.41),
and (8.42).

With the metric in hand, we can set about computing the connection coetffi-
cients and curvature tensor. Setting @ = da/dt, the Christoffel symbols are given

by

) aa e Kr
4 R r, = ——

1 ] —wr? 1 1 —«r?
[“ﬂl = i | r':.l ot - 2 dhoad

37 = ddr 33 = aar” sin® g

" ) 1 a
1 = Fas Ty = =

il 02 3 a

7 " i d

1"%2 = =r(l—=kr) I_,',a = —r(l = kr?)sin’@
]-*2 — E’“'.-’ — !

VRS

r3 = —sinfeosf '3 = cotd, (8.44)
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or related to these by symmetry. The nonzero components of the Ricei tensor are

i
Rop = —=3-
el
ai + 26° + 2
R” = e————
| = kr=

Ry = ri(ad + 24°% 4 2)

rilad + 2a° + 2&)sint 0, (8.45)

b
]

and the Ricei scalar is then
i [a\? | «x .
R=ﬁ|:—+(-) +-‘} (8.46)
a a -

8.3 ® THE FRIEDMANN EQUATION

The RW metric is defined for any behavior of the scale Tactor a(t); our next step
will be to plug it into Einstein's equation to derive the Friedmann equation(s)
relating the scale factor to the energy-momentum of the universe. We will choose
to model mater and cnergy by a perfect fluid. 1t is clear thar, if a fluid that 1s
isotropic in some frame leads (o a metric that 1s isetropic in some frame, the two
frames will coincide; that 1s, the Auid will be at rest in comoving coordinates, The
four-velocity is then

UE = (1,0,0,0), (8.47)

and the energy-momentum tensor

T}.rr = t..IU '+ P}Lrj_r, L'rl.' ';' -PR.I'“' (3.-13}
becomes
oo [} (0
(
Tigp = . 4L
Lo gy A
1}

With one index raised this wkes the convenient form
TH, = diag(—p. p. p. pl. (8.50)
Mote that the trace is given by
T=T!y =—p+3p. (8.51)

Before plugging in to Einstein’s equation, it is educational to consider the zero
component of the conservation of energy equation;
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0

]

VT o

b TV + I‘:;_T*n — T';[:,T“ i

i
= —dop — 3“£p + p). (8.52)

Te make progress we can choose an equation of state, a relationship between p
and p. Often the perfect fluids relevant o cosmology obey the simple equation of
state

p=wp, (8.53)

where w is a constant independent of time. OFf course we are free to define the
parameter w = p/p whether or not it remains constant; if w varies, however, it is
not really legitimate to call p = wp the “equation of state.” The ¢conservation of
energy equation becomes

= 3l + W (8.54)
&

E-RE-T

If w is a constant, this can be integrated 1o obtain
p & g~ itw) (8.55)

To get an idea about what values of w are allowed, refer to the discussion of energy
conditions in Chapter 4. The Null Dominant Energy Condition, which allows for a
vacuum energy of either sign but otherwise requires matter that cannot destabilize
the vacuum, implies

w| = 1. (H.50]

While this requirement is by no means set in stone, it scems like a sensibly con-
servative starting point for investigations of what maght happen in the real world.

The two most popular examples of cosmoelogical Nuids are known as matter
and radiation. Matter is any set of collisionless, nonrelativistic particles, which
will have essentially zero pressure:

v =10, (8.57)

Examples nclude ordinary stars and galaxies, for which the pressure is negligible
in comparison with the energy density. Matter is also known as diesr, and universes
whose energy density is mostly due to matter are known as matter-dominated.
The energy density in matter falls off as

M e a3 (8.58)

This 1s simply interpreted as the decrease in the number density of particles as the
universe expands, For matter the energy density s doninated by the rest energy,
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which is proportional 1o the number density, Radiation may be used o describe
either actual electromagnetic radiation, or massive particles moving at relative ve-
locities sufficiently close to the speed of light that they become indistinguishable
from photons (at least as far as their equation of state is concerned). Although
an isotropic gas of relativistic particles is a perfect fluid and thus has an energy-
momentum tensor given by (8.48), we also know that Ty, for electromagnetism
can be expressed in terms of the feld strength as

THV .= FRAFY, — 3R By (8.59)
The trace of this is given by
Té, =FPF, — {(@)F* b =0 (%.60)
But this must also equal (8.51), so the equation of state is
PR = -_L;f,}g. iB.61)

A universe in which most of the energy density is in the form of radiation is known
as radiation-dominated. The energy density in radiation falls off as

pr cca™d, (8.62)

Thus, the energy density in radiation falls off shightly faster than that in matter;
this is because the number density of photons decreases in the same way as the
number density of nonrelativistic particles, but individual photons also lose encrgy
as @ as they redshift, which we will see later, Likewise, massive but relativis-
tic particles will lose energy as they “slow down”™ in comoeving coordinates. We
believe that today the radiation energy density is much less than that of mateer,
with pu /PR~ 107, However, in the past the universe was much smaller, and the
energy density in radiation would have dominated at very early times.

As we have discussed, vacuum energy also takes the form of a perfect flud,
with an equation of state py, = —pe,. The energy density is constant,

Pa 0 a’. (8.63)

Since the energy density in matter and radiation decreases as the universe expands,
if there is a nonzero vacuum energy it tends to win out over the long term, as long
as the universe doesn’t start contracting. I this happens, we say that the universe
becomes vacuum-dominated. de Sitter and anti-de Sitter are vacuum-dominated
solutions.

We now turn to Einstein’s equation, Recall that it can be written in the form
(4.45):

Ruv = 876G (T — JguT). (8.64)
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The v = 00 equation is

i

ii
=3 =47G(p +3p), (8.65)
&

and the v = ij equations give

i iy o 2
s - 2(‘—1) + 2= =4xCip - pl. (#.66)

w o o

There is only one distinel equation from gv = 1, due 1o isotropy. We can use
(8.65) to eliminate second derivatives in (8.66), and do a littde cleaning up o
obtain

av:  8aG K
) = _Ir} e (Sh?}
€l ? a*
and
i dr GG )
S (o +3p). (8.68)
14 -

Together these are known as the Friedmann equations, and metrics of the form
(8.43) obey these equations define Fricdmann—Robertson—Walker (FRW) uni-
verses. In fact, if we know the dependence of p on a, the first of these (8.67)
is enough w solve for a(r); when you hear people refer to the Friedmann equa-
tion, this is the one 1o which they are referring, whereas (8,68} is sometimes called
the second Friedmann eguation,

A bunch of terminology is asseciated with the cosmological parameters, and
we will just introduce the basics here. The rate of expansion is characterized by
the Hubble parameter,

T (R.69)
¥

The value of the Hubble parameter at the present epoch is the Hubble constant,
Hy. Current measurements lead us to believe that the Hubble constant 1s 70 +
10 km/sec/Mpe. (Mpe stands for megaparsec, which is 3.09 x 10°* cm.) Since
there is still some uncertainty in this value, we often parameterize the Hubble
constant as

Hy = 100h km/see/Mpe, (8.70)

so that i = (L7, Typical cosmological scales are set by the Hubble length
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dy = Hy'e
=925 x 107h " em
= 3.00 x 10°5~1 Mpe, (8.71)
and the Hubble time
gy =Hy'

=3.00 % 107h! sec

=978 % 10% ' yr. (8.72)

OFf course since we usually set ¢ = 1, you will see Hﬁ" referred to as both the
Hubble length and the Hubble time. There is also the deceleration parameter,
adi
g =——, (8.73)
as
which measures the rate of change of the rate of expansion.
Another useful quantity 1s the density parameter,

G el i
ﬂ — —p = - EB-?""J
IH . Ferit |
where the critical density is defined by
342
= — 75
Perit " (8.75)

This quantity, which will generally change with time, is called the critical density
because the Friedmann equation (8.67) can be writlen

i

Hg?"

Tl B (8.76)
The sign of & is thercfore determined by whether £ is greater than, equal 1o, or
less than, one, We have

£ =< Pent s it <1 = K<
=iy + R=1 & k=
PPy = 82>1 & k>

0 <« open
0w flat
0« closed.

The density parameter, then, tells us which of the three Roberison-Walker ge-
ometries describes our universe. Determining it observationally is of crucial im-
portance; recent measurements of the cosmic microwave background anisotropy
lead us o believe that €295 very close 1o unily.
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EVOLUTION OF THE SCALE FACTOR

Given a specification of the amounts of energy density g; in differemt species
i, along with their equations of state g = pitpe;). and the amount of spatial
curvature &, one can solve the Friedmann equation (8.67) 10 obtain a complete
history of the evolution of the scale factor, a(r). In general we simply numerically
integrate the Friedmann equation (which is just a first-order differential equation),
but it is useful to get a feeling for the types of solutions appropriate to different
cosmological parameters,

To simplify our task, let us imagine that all of the different components of
energy density evolve as power laws,

o= gioa ™, (B.77)

Comparing to (8.55), this is equivalent to positing that each equation-of-state pa-
rameter uy = p; /e is a constant cqual to

Wy = %n,- - 1. (B.78)

We can further streamline our expressions by treating the contribution of spatial
curvature as a fictitious energy density

3x el
Pe = —m. lﬂ?&“
with a corresponding density parameter
o . I (8.80)
Héa"

It’s not an energy density, of course, so don’t forget that this is just notational
sleight-of-hand. The behaviors of our favorite sources are summarized in the fol-
lowing table,

wy | ny
matter { { 3
radiation | | 4 (8.81)
curvattre | — ; 2
vacuum -1 ]

In these variables, the Friedmann equation (8.67) can be written

5 8nG

2

H===3 o (8.82)
i)

where the notation %, ., indicates that we sum not only over all the actual com-

ponents of encrgy density ;. but also over the contribution of spatial curvature
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Lo MNote that if we divide bath sides by H?, we ohtain

I = Zﬂ‘-. (8.83)

ilc)

The right-hand side is nor the total density parameter £2, which only gets contri-
butions from actual energy density (not curvature ); we therefore have

G.=1—18. (8.84)

Let's begin by asking what can happen it all of the g 's (including p.) are non-
negative. Because H* is proportional to ¥ i (c) Pi- the universe will never undergo
a transition from expanding to contracting so long as 3, . o # 0. We can also
take the time derivative of the Hubble parameter,

i (f) . (8.85)
il &

and plug in the two Friedmann cquations (8.67) and (8.68) to obtain

Ho=—42G Y (1 +w)p. (8.86)

el

Since we are imagining that |w;| = 1. when all the g;’s are nonnegative we will
always have [ < 0. In other words, the universe keeps expanding, but the expan-
sion rate continually decreases (which suggests the excellent question, what made
it so large in the first place?).

From (B.85) we see that & can be positive and H be negative at the same time—
the scale fuctor can be “accelerating” even though the expansion rate as measured
by the Hubble parameter is decreasing (for example, if @ o #*). This is an un-
avoidable subtlety of non-Euclidean geometry, The Hubble parameter and the
derivative of the scale tactor are the answers to two different questions. 11 we set
Iwo test particies at a fixed initial distance, and ask by how much they have sepa-
rited a short time thereafter, the answer is given by the Hubble parameter. If, on
the other hand. we pick some fixed source. and ask how 1t appears to move away
from us with time, the answer is given by the change in the scale factor. There
are consequently two very different and equally legitimate senses of “accelerat-
ing" {or “decelerating™). In practice, “accelerating” usually refers to a siluation in
which @ = 0, even if H = 0. This discussion is not completely academic; as we
will see below, our current real universe seems to be of this type.

[t is by no means necessary that each g; should be nonnegative, Matter and
radiation arise from dynamical particles and fields; and we consequently expect
that their energy densities will never be negative; if they could be, empty space
could decay into a collection of positive- and negative-energy fields. But vacuum
and curvature are different stories. Vacuum energy is nondynamical, so a nega-
tive value cannot induce any instabilities, while curvature is simply a property
of the spatial geometry, and can have either sign. I we therefore have either a
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negalive vacuum energy or a positive spatial curvature (remember p, o¢ —« ), the
Hubble parameter can vanish and even change sign. An example is provided by
the de Sitter metric (8.6), which has a positive vacuum energy but also a positive
spatial curvature; it deseribes a universe that inttially collapses, reaches a turning
point, and thereafter begins w expand,

The real world s an unudy place, consisting of numerous different kinds of
energy density. Because different sources evolve at different rates, however, for
long periods the energy density will be clearly dominated by one kind of source.
It is therefore very useful to examine solutions to the Friedmann equation when
there is only one kind of energy density g o a ", Because we are including
spatial curvature as an effective energy source, this means we are considering
cither flat universes dominated by a single source, or completely emply universes
with spatial curvature. The Friedmann equation then implies

R (8.87)

This can be immediately integrated 1w obtain

a o 12 (for p cca™™). | {5.88)

Consider for example a flat universe dominated by matter, £ = 2y = 1; this
is known as the Einstein—de Sitter model, and for a long time was the favorite
(at least among theorists) to describe the real world. In an Einstein—de Siter
universe, the scale factor evolves as a o %3, A flat radiation-dominated uni-
verse, meanwhile, evolves as a o #'/%. The conformal diagram for any such
universe with n = 2 is dernived in Appendix H. Even though we believe there
are nonzero amounts of matter, radiation, and vacuum energy in the real universe,
these solutions are still very useful; as we discuss later, the universe was radiation-
dominated at early times, and was matter dominated as the universe expanded
froma ~ 13000 wa ~ 1/2.

These solutions all feature a singularity at @ = {0, known as the Big Bang. It
represents the creation ol the universe from a singular state, not an explosion of
matter into a pre-existing spacetime. It might be hoped that the perfect symmetry
of our FRW universes is responsible for this singularity, but in fact that's not
true; cosmelogical singularity theorems show that any universe with g = ) and
p = 0 must have begun at a singularity, OFf course the energy density becomes
arbitrarily high as & — 0, and we don’t expect classical general relativity o
be an accurate deseription of nature in this regime; presumably quantum gravity
becomes important, although it is unclear how at present.

Looking at (8.88), we see that a universe dominated by vacuum energy (0 = 0)
is clearly a special case. The scale factor then expands as an exponential rather
than a power law; the entire metric is

ds® = —dt* + e"Mde’® + dy* + d2?], (8.89)
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where the Hubble parameter H is a constant. Of course, in Section 8.1 we al-
ready described a cosmological spacetime with a positive cosmological constant:
de Sitter space, which featured k. = 0 and a o coshit /o). What is the relationship
between that solution and the one here, with ¢ = 0 and @ & exp(H)? They are
the same spacetime, represented in different coordinates. One way 1o verify this
is 10 caleulate the Riemann tensor for (8.89) and check that it has the characteris-
tic form of a maximally symmetric spacetime, (8.1). Since maximally symmetric
spacetimes with positive curvature are locally unigue, the metrics (B.6) and (8.89)
must describe the same manifold, or pans thereof. In fact, the coordinates of (3,89)
only cover part of de Sitler; they are incompleie in the past. In the exercises you
are asked o show that comoving geodesics in these coordinates reach r = —2¢ in
finite affine parameter; they run into the edge of the coordinates, In the conformal
diagram of Figure 8.1, these coordinales cover the upper-right triangular portion
of the square. See Hawking and Ellis (1973) for a more complete description of
different coordinate systems on de Siner and anti-de Sitter,

Another interesting special case is the completely empty univierse, with p = 0,
but with spatial curvature, The Friedmann equation becomes

H>=-—, (8.90)

sothe curvature & must be negative. Thinking of curvature as a fictitious energy
density pe o a~2, from (2.88) we know that such a universe will expand linearly,
¢ o0 ¢, This spacetime is known as the Milne universe. However, just as with
de Sitter, we know of another cosmological spacetime with p = O—in this case,
fiat Minkowski space. Once again, the Milne spacetime is just a patch of Minkow-
ski in a certain incomplete coordinate system, [t can be thought of as the interior
of the future light cone of some fixed point in Minkowski, foliated by negatively-
curved hyperboloids. To check, it would suffice to calculate all of the components
of the Riemann tensor, which turn out to vanish: any spacetime with vanishing
Riemann curvature is locally Minkowski,

In contrast to these idealized solutions, a realistic cosmology will feature sev-
eral forms of energy-momentum. In the current universe, we feel confident that
the radiation density is significantly lower than the matter density, but that vac-
uum and matter are both dynamically imporant, It is therefore convenient 1o
parameterize universes like ours by £2y and £24, with the curvature fixed by
Q. = 1 — @ = Qu. The expansion history of some particular examples of
such universes is shown in Figure 8.3, As these universes expand, the relative
influences of matter, curvature, and vacuum are aliered, since the corresponding
densities evolve at different rates:

Qa o Qoa’ o Qua’. (8.91)

As g — (0 in the past, curvature and vacuum will be negligible, and the universe
will behave as Emnstein—de Sitter. As g — o< in the future, curvature and matter
will be negligible, and the universe will asymptote to de Sitter; unless the scale
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FIGURE 8.3 Expansion histonies for different values of 82y and €25, From op to bot-
tom, the curves deseribe (S26, 240 = (0.3,0,7), (0.3, 0.0), (1.0, 0.0), and (4.0, 0.0).

factor never reaches infinity, because the universe bégins to recollapse at some
finite time.

Recollapse will @fways occur if the vacuum energy is negative; as the universe
expands, the vacuum energy eventually dominates, and the effect of €2, < 0
is o cavse deceleration and recollapse (just as the effect of 2, = 0 is o push
the universe apart). Recollapse 15 also possible with 2, = 0, if £y 1s sufficiently
large that it halts the universal expansion betore £2 4 has a chance to take over. The
possibilities are expressed as different regions of the £y / €24 parameter space in
Figure 8.4, The diagonal line represents Qi = 1, implying & = 0.

Tor determine the dividing line between perpetual expansion and eventual rec-
ollapse, note that collapse requires the Hubble parameter to pass through zero as
it changes [rom positive o negative. The scale factor ., at which this turnaround
oceurs can be found by setting & = 0 in the Friedmann equation,

H? = 0= """ (pwoa;* + pno+ peoa; ?) - (8.92)

We can divide this by H[f. use 000 = | — 2umo — S2ap. and rearrange a bit to
obtain

QMJH: + (1 — Qmo — 24 )a. + Spp = 0. (8.93)

This is a cubic equation for a., the scale factor at turnaround. Of course we don’t
actually care very much about a.; what we care about are the values of §2a0,
given $2yp, for which a real solution to (8.93) exists. Solving the cubic equation
and doing some math, we find that the value of €2, for which the universe will
expand forever is given by
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FIGURE 8.4 Properties of universes dominated by matter and vacuum energy, as a fune-
tion of the density parameters Qg and £ . The circular region in the upper-left corner
represents roughly those values favored by experimental data (as of 2003).
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Qao = (8.94)

Mote that, when Q240 = 0, open and flat universes (2o = Qmo = 1) will expand
forever, while closed universes (S2g = Q2w > 1) will recollapse. Traditional dis-
dain for the cosmological constant has led to a folk belief that this is a necessary
correspondence; once the possibility of vacuum energy is admitted, however, any
combination of spatial geometry and eventual fate is possible.

In the upper-lefi corner of Figure 8.4, we have indicated the currently favored
values of the cosmological parameters: Qa0 ~ 0.3, 840 ~ 0.7, as we will dis-
cuss in Section 8.7. This is well into the regime of perpetual expansion; if the
vacuum energy remains truly constant (which it might not), our universe is fated
to continue its expansion for all time.

We end this section by noting the difficulty of finding static solutions to the
Friedmann equations. To be static, we must have not only & = 0, but also 4 = 0.
From (8.68), this can only happen if the pressure is

p=-1p, (8.95)
and from (8.67), there must be a nonvanishing spatial curvature

K b
— = —p, 896
" 3 P (8.96)
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Because the energy density and pressure must be of opposite sign, these condi-
tions can't be fulfilled if we only invoke matter or radiation. When Einstein first
lovked for cosmological solutions in GR, astronomers had not vet discovered that
the universe was capanding, so the lack of static selutions was considered prob-
fematic. This provided the motivation for Einstein to introduce the cosmological
constant; the static conditions can be satisfied by a combination of matter and
vacuum encrgy, with

Pa = 30M, (8.97)

along with the appropriate positive spatial curvature. These parameters describe
the Einstein static universe, Today we know that the universe is expanding, so
this selution is of little empirical interest; it is, however, extremely useful to the-
orists, providing the basis for the construction of conformal diagrams.

REDSHIFTS AND DISTANCES

It 15 elear that we would like 1o determine a number of quantities observationally
to decide which of the FRW models corresponds to our universe. Obviously we
would like 1o determine Hy, since that is related w the age of the universe, We
would also like to know €2, which determines & through (8.76). To understand how
these quantities might conceivably be measured, let’s consider geodesic motion in
an FRW universe. There are @ number of spacelike Killing vectors, but no nmelike
Killing vector 1o give us a notion of conserved energy. There is, however, a Killing
tensor, IF 0% = (10,0, 0} is the four-velocity of comoving observers, then the
tensor

Ko = @ (gue + U Us) (8.98)

satisties Vig K0 = 0 (as you can check), and is therefore a Killing tensor, This
means that if a particle has four-velocity V* = dx* /d 4. the quantity

K% = K, ,VEVY = a*[V, V¥ + (U, V") (8.99)
will be a constant along geodesics, Let's think about this, first for massive par-
ticles. Then we will have VeV =—1,50

(V02 = | + VP, (8.100)
where:| ‘;}!2 = gij VIV We also have Uy V# == VY9 50 (8.99) implies
- K
V]| = —. (8. 101)
o

The particle therefore “slows down™ with respect to the comoving coordinates as
the universe expands. In fact this is an actual slowing down, in the sense that a gas
of particles with initially high relative velocities will cool down as the universe
expands,
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A similar thing happens to null geodesics. In this case V, V¥ = 0, and (8.99)
implies

U, VH* = (8.102)

K
a’
But the frequency of the photon as measured by a comoving observer is @ =
=/, V#. The frequency of the photon emitted with [requency wen will therelore
be observed with a lower frequency wope as the universe expands:

ghs Ligm

= (8.103)

em toks

Cosmologists like to speak of this in terms ol the redshift z between the two
events, defined by the fractional change in wavelength:

: ;
Aghs — hem

Letn = - (8.104)
degqry
If the ohservation takes place today (aghs = ag = 1), this implies
1
o = —. {H.I{JS‘]
1+ 2em

So the redshift of an object tells us the scale factor when the photon was emitted.

MNotice that this redshift is net the same as the conventicnal Doppler effect; it
is the expansion of space, not the relative velocities of the abserver and emitter,
which leads to the redshift. Nevertheless, if we observe galaxies over distances
that are small compared 1o the Hubble radius H{,_" and the radius of spatial cur-
vature & ~ 2, the expansion of the universe looks very much like a set of galaxies
moving apart from each other and the redshift looks very much like the Doppler
effect. Consequently, astronomers often think of the redshift in terms of a “veloc-
ity™ v = ¢z, where ¢ is the speed of light. Even though we know you can't really
speak of the relative velocities between two objects at different points of a curved
spacetime, the fiction works well over sufficiently short distances. Within this ap-
proximation, the “distance” d from us to a galaxy can be taken to be the instanta-
neous physical distance Jp (the distance, in physical units such as centimeters,
between us and the location of the galaxy along our current spatial hypersurface).
Let's write the RW metric in the form

ds® = —dr* + a* (1) R} [axl + Sit(x ::fsf]. (8.106)
where Sp(x ) is defined by (8.33), and & € [+1,0, = 1}. In this form, the instanta-
neous physical distance as measured at time ¢ between us (3 = () and a galaxy

at comoving radial coordinate y is

dj:“}zfd“}R{jx, (8.107)
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where ¥ remains constant because we assume both we and the observed galaxy
are perfectly comoving, (They might not be, in which case it is trivial to include
the corrections due to so-called “peculiar velocities.”) OF course “distance™ is in
guotes because there are several mequivalent uselul notions of distance once we
leave this approximation, but they all agree when op is small. Then the observed
veloeity (as inferred from the redshift) is simply

. y a
v=dp=aRyy = ;d,u. (8.108%)
Evaluated today, this becomes

v = Hpdp. | (8.109)

the famous Hubble law: the observed recession velocity is directly proportional
to the distance, for galaxics that are not too far away.

I the redshift 1s not very small, we have 1o think more carefully about what
we mean by “distance”™ in cosmology. The instantancous physical distance 1s a
convenient construct, but not itsell’ observable, since observations always refer to
events on our past light cone, not our current spatial hypersurface. In Euclidean
space there are a number of different ways (o infer the distance of an object;
wee could for example compare 1s apparent brightness to its intrinsic luminoesity,
or its apparent angular velocity to s intrinsic transverse speed, or its apparent
angular size to its physical extent, For each of these cases, we can define a kind
of distance that is what we would infer if space were Euclidean and the universe
were not expanding.,

Let's start with the luminosity distance oy, defined o satisfy

di = ni—r (8.110)
where L is the absolute luminosity of the source and # is the flux measured by the
observer (the energy per unit time per unit area of some detector). This definition
comes from the fact that in flar space, for a source at distance o the flux over
the luminosity is just one over the area of a sphere centered around the source,
Fil=1/Ald) = | /4. In an FRW universe. however, the flux will be diluted.
Conservation of photons tells us that all of the photens emitied by the source will
eventually pass through a sphere at comoving distance » from the emitter. But
the fTux is diluted by two additional effects: the individual photons redshifl by a
tactor (1 4+ z), and the photens hit the sphere less frequently, since two photons
emitted a time &t apart will be measured at a time {1 + 2)4r apart. Therefore we
will have

1

F
E=['!+“:I:T;!- (8.111)
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The area A of a sphere centered at comoving distance y can be derived from the
coefficient of d2? in (R.106), yielding

A =4m R3S (x), (8.112)

where we have set air) = | because we are observing the photons today. Putting
itall wogether yields

dr = (1 +z)RoSi(x). (8.113)

The luminosity distance g is something we might hope 1o measure, since there
are some astrophysical sources whose absolute luminosities are known. But y is
not observable, so we have to remove that from our equation. On a null geodesic
(chosen o be radial for convenience) we have

0 =ds® = —di* +a*REdx?, (8.114)
or
_y [ dr _|f da
= —_ =R ———e (R.115
X 0 j @ 9 a~H{a) )

where we have used H = &/a. It is conventional to convert the scale factor to
redshift using g = 1/(1 + 2), so we have

T ode

—_— (8.116)
o H{z")

~1
X'[Cj = R{:,
In order 10 evaluate the Hubble parameter in this integral we use the Friedmann
eguation (8.67), which we write as in the previous section as

Bl

H=—= > p. (8.117)
= i{c)

To simplhify things. we may again assume that each density component evolves as
a power law,

pi(z) = piga™™ = piol1 + 2™, (8.118)
Then we can write
Hiz) = HoE(z), (8.119)
where

1/2
E(z) = [Z Qio(1 —|—E}'”'} ; (8.120)

el
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where the density parameters €; are defined by (8.74). The equations below in-
volving £(z) will be true whether or not the energy sources evolve as power laws;
if they do not, simply use E(z) = H(z)/Hqy [where H(z) is determined by the
Friedmann equation] rather than (¥.120),

So the luminosity distance is

iz’
di(z) = (1 + 2 RySk [RJ!Ht;lfg':_ﬂ]' (8.121)

Note that Ry drops ouwt when & = 0, which is good, because in that case 11 15
a completely arbitrary parameter. Even when it is nol arbitrary, it is still more
commaen o speak in lerms of Qg = —kIRSH‘f, which can be measured either
directly through determinations of the spatial curvature, or by measuring the den-
sily parameter and using Q2.9 = | — £2¢. In terms of this parameter we have

. ;!
Ry = HE] l ‘kﬂ{ﬁ = —;-:JZ |
cld

(8.122)

We theretore write the luminesity distance in terms of measurable cosmological
parameters as

H
dI{I-—ll+7)——‘ﬁt[ d}lf
V1820l

e ] (8.123)

Although it appears unwieldy, this equation is of central importance in cosmol-
ogy. Given the observables Hy and €50, we can straightforwardly caleulate the
luminosity distance to an object at any redshift z; equally well, we can measure
dy(z) for objects at a range of redshifts, and from that information extract Hy
and/or the £2;ys,

Along with the luminosity distance are two other related distance measures,
Just as the luminosity distance is the distance we infer from the intrinsic and
observed tuminosity of the source 1f we were in flat space, the proper motion
distance oy 15 the distance we infer from the intrinsic and observed motion of
the source. It is defined 1o be

it
Ty = =, (8.124
dy 3 ( )

where 1 is the proper transverse velocity (something vou would measure, for ex-
ample, in k/s) and i 1s the observed angular velocity. The angular diameter dis-
tance, meanwhile, is the distance we infer from the intrinsic and observed size of
the source; it is defined to be

I

E B

dy = (8.125)
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where R is the proper size of the object and 8 is s observed angular diameter.
[n both cases we can derive formulas analogous to (8,123); fortunately, the un-
wieldy dependence on the cosmological parameters is common to all the distance
measures, and we are left with a simple dependence on redshift:

dp = (1+2)dy = (1 +2)%da. (8.126)

as you are encouraged to check. So if we measure one such distance, we can easily
convert to any other; or we can measure different distances independently and use
(8.126) 1o test the consistency of the RW framework,

While we're contemplating distances, let's also consider the elapsed time be-
tween now and when the light from an object at redshift z was emitted. [T the
age of the universe today is fp and the age when the photon was emitted is ¢, , the
lookbhack time is

“fi
iy — = / dt
s

_fi da
- a afla)

o [’I‘Zi
- H"f . 8.127
v Jo (14 Z2)E(2) ( }

For example, consider a flat (& = 0) mater-dominated (p = gy = pm]a_‘]
universe. Then

E{z) = (1 + zp*7. (8.128)

(s ]

= M - dz’
0=h=% i Gt

2 ]
=345 [1-(+207%2]. (8.129)

The total age of a matier-dominated universe is obtained by letting r. — 0 (z. —
oa),

10(MD) = $ H, " (8.130)

For universes that are not completely matter-dominated, the factor of ‘3 will be not
quite right, but for reasonable values of the cosmological parameters we usually
get iy m'H{,_1.

CRAVITATIONAL LENSING

In Chapter 7 we introduced the concept of gravitational lensing: the deflection and
time delay of light by a Newtonian gravitational field. In addition 10 providing a
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FIGURE 8.5 The geometry of gravitational lensing, encapsulated in the lens equation
(8.132). The effect of the lens is 1o distort the angles # that would be observed in a flat
Minkowski background into the angles #.

test of GR in the Solar System, lensing occurs in numerous astrophysical contexts,
and has become an indispensable part of modern cosmology.”

Two important features distinguish cosmological lensing from the case we dis-
cussed earlier: a Robertson—-Walker metric replaces the Minkowski background,
and the lenses themselves are often more complex than simple point masses. A
typical lensing geomelry is portrayed in Figure 8.5, Throughout this discussion
we will assume that the lens is “thin”"—much smaller in spatial extent than the
distances between the source, lens, and observer. In this case we can sensibly
speak of a unique distance to the lens, &;, and between the lens and the source,
drs.

We describe a (possibly complicated) image on the sky by a set of angles be-
tween different components of the image. These angles can be thought of as two-
dimensional vectors on the sky. The effect of the lens is to distort the angles that
would be observed in the absence of any deflection, such as the angle § between
the source and the lens, into a new image characterized by a set of angles 8. We
assume that the angles are small throughout. This map is described by the re-
duced lensing angle & = a- E According to the geometry shown in Figure 8.5,
it is related to the actual deflection angle & by

g Chim (8.131)

2 An excellent overview of gravitational lensing. from which our discussion borrows, can be found in
R. Marayan and M. Bartelmann, “Lectures on Gravitational Lensing,” 13th Jerusalem Winter School
in Theoretical Physics, http://arxiv.org/astro-ph/9606001.
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We therelore get the lens equation

! =
Zhds | (8.132)

ey

k-1
It
=i

The lens equation simply describes ray-tracing in a perturbed spacetime,

Of course, we should think carefully about the “distances” o; portrayed in the
figure. Lensing occurs in an expanding universe, which might also have spatial
curvature. The lens equation will nevertheless hold if we define (he distances
to be such that the geometrical relations described by the lens equation held, In
other words, these are the distances that we would infer, given the angles and
transverse physical sizes, in a static Euclidean spatial background. But this is
precisely the definition of the angular diameter distance (8.125). We therefore take
all distances in this section to be angular-diameter distances. Note that angular-
diameter distances do not necessanly add, so that ds # dy + dps.

As a simple example, consider a point mass lens. In our investigation of the
Newtonian lmit i Chapter 7, we found that the deflection angle for a photon
traveling through a gravitational potential @ 1s given by

@= 2f V., dds, (8.133)

which for a point mass M al an impact parameter # becomes

- 4ocM
o= " (B.134)

The impact parameter can be expressed as b = ;6. The lens equation (8.132)
becomes
dps 4GM

= - : (®.135
£ dedy 8 j

It is illuminating to consider the simplest situation, in which the source and lens
are collineas (F = 0), In that case, the source will be lensed into an Einstein ring
surrounding the lens, at an angular separation given by the Einstein angle:

o [4GMdys
) 1|'II drds

(8.136)

The Einstein angle sets a characteristic scale for lensing, even in more compli-
cated configurations. We can also define an associated distance scale, the Einstein
radius:

||'4(I:Hd;‘c.‘:r::g

Rp = 8.137
E ‘,II ﬂls { l]
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When converting to centimeters or other physical units, don’t forget that ¢ = |
in all of our equations. To gel a feeling for the amount of lensing in typical as-
trophysical situations, we can consider two common occurrences: “microlensing”
by approximately solar-mass objects within our galaxy, and cosmological lens-
ing by galaxies or clusters, In the former case the Einstein angle will be of order
milliarcseconds, while in the latter case it will be of order arcseconds:

II # Yk
G = '[].‘.-I'Hr;II ( —_‘-:i) ( i ;;FC) milliarcsecs

[ M Gipe
=09 e —— | arcsecs., 13
f(lﬂ”;’ld{;__)( > )MLSLU\ (8.138)

Sticking for the moment with the point-mass lens, most often we will not be
lucky enough to have source and lens perfectly aligned, although a number of
spectacular examples of Einstein rings have been observed. Then we can solve
(8.135) to obtain two values of the image angle,

e =1 (,fl': /g2 -+4&§), (8.139)

The image at ¢4 will always be outside the Einstein angle, while #_ will be in-
side. In fact this formula is somewhat misicading, as there will always be an odd
number of images: for a peint mass lens, the third image would be located at the
same position as the lens itself

Now let’s consider more general lenses than point masses. We know that the
deflection angle will be given in terms of the Newtonian gravitational potential
by (8.133). We can define the lensing potential by integrating over past-directed
geodesic paths emanating from the observer, as

5 dis "
W (d) = 2--f'*—""-f¢{d;,ﬁ,sms_ (8.140)
dpds
In terms of the lensing potential, we can straightforwardly derive the reduced
lensing angle by taking the gradient,

o = ﬁrul,'ﬂf

F S fﬁf,._ws_ (8.141)
i

Motice that the angular gradient Vi is related 10 V1, the gradient with respect
1o transverse distance at the location of the lens, by a facior of d; . The thin-
lens approximation allows us 1o collapse the integral to quantities evaluated at
the location of the lens. We can also take the (two-dimensional ) Laplacian of the
lensing potential to obtain the convergence &, via
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%v,j,gf:

ird
il i fv%d.w. (8.142)
»

KIIE;}

[

The convergence can be thought of as a measure of the integrated mass density.
We can invert the above expressions to write both the lensing potential and the
reduced deflection angle in terms of the convergence, as

- 1 e e g
Y(f) = — fx(ﬁ'} Inig — 4 | d* (8.143)
s
and
w1 o =6
a(8) = —fx(ﬁl | — a0 (8. 144)
b3 & — &)

To cheek these equations, remember that the vectors are defined only in the two
transverse dimensions,

The convergence describes the focusing of light rays by the gravitational lens.
This focusing causes the source to appear larger (just as in a magnifying glass),
According to Liouville's theorem of conservation of phase-space density for the
photons emitted by the source, the surface brightness of the source will be con-
served under lensing; the increase in size therefore leads to magnification of the
brightness. Al the same tme, we can have distortion caused by twisting of the
light rays through the lens, which leads to shear of the shape of the image. To
describe both phenomena, we consider the 2 > 2 matnx of derivatives of the lens
map,

BTl
Note that there is no real distinction between upper and lower indices, as they are
defined in & two-dimensional Euclidean plane. Since A =0 — &, we have

ther
l‘qu' = 5” E
=5;J: = Wij, (8.146)
where we have introduced the notation
aty
TR e (8.147
Vi A6 Ha ) ;

This matrix A encodes the local properties of the lensing map. s inverse matrix
is known as the magnification tensor,
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i 4!
ag

Why does it get this name? The lens distorts an arca element described by ,h'“ mnto
one described by @, and the change in area is described by the Jacobian of this
map, which is simply the determinant of M, This determinant is defined as the
magnification i,

(8, 148}

|

H=i-‘wi=m-

(¥.149)
The absolute magnitude of p tells us the actual change in brightness of the source;
je may be negative, which means that the parity of the image has been flipped. We
speak of magnification because lensing is only noticeable 1f the lens and source
are near to cach other on the sky, in which case the focusing effect leads only to
increases in the apparent brightness; a lens far away from the seurce (in position
on the sky) would lead 10 a miniscule decrease in the luminosity that will never
be noticed. (If there are muliiple images. the sum of the brighinesses of all the
images will exceed that of the undistorted source.)

The components of A can be decomposed into the effects of convergence and
shear. For the convergence, fromx = 3' "T*'r: i we have

k= F(yn + y22). (8.150)
The shear, meanwhile, distorts the shape of the source; if an immally circular
source is distorted into an ellipse of ¢llipticity 3 and posinon angle ¢, we define
the two components of the shear to be
yi = ¥ cos{2e)
¥r = ysin(2g), (8.151)

50 that the total shear is y = v :"1.?' + },23_ In 1erms of the lensing potential the
components are given by

¥ =S¥ — ¥22)

¥z =2 = ¥, (8.152)

Inverting these relationships to find the components of A vields

| = = —¥7
A= = o . l.ﬂ
( — 2 l—x+}f|) (8 )

We can therefore express the magnification in terms of the convergence and shear,
as

1

e (8.154)
22 {1 =r)>—y

-t
&
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These features of lensing are becoming increasingly important in observational
cosmology. The obvious case of interest 13 so-called “strong lensing,” when the
source is within the Einstein radius of the lens, and multiple images are possible,
By observing several images of a single source, we can infer properties of the lens
mass distribution (for example, to search for dark matter); we can also use the time
delay along different paths to measure the Hubble constant, and the statistical fre-
quency of lensing o constrain other cosmological parameters, However, lensing
need not be strong to have an important effect, “Weak lensing,” when the source
and lens are separated by more than an Einstein radius, will generally lead 1o
small amounts of magnification and shear which are impossible o detect without
a priori knowledge of the properties of the source. However, the shearing effect
can be detecied statistically, by looking at the shapes of thousands of galaxies that
are assumed to be intrinsically random in their orientations, Shearing by weak
lensing leads to correlated distortions in the shapes, which can reveal a great deal
about the distribution of matter between the observer and the distant sources.

OUR UNIVERSE

Throughout our discussion of the behavior of FRW cosmologies, we have alluded
to the actual values of the cosmological parameters corresponding to the universe
in which we live. Let us now be more systematic, and discuss both the universe we
see today and a plausible extrapolation back to early times. Our discussion will
necessarily be brief, both for reasons of space and because cosmology 1s an active
arca ol research; look for recent review articles (o get up-to-date descriptions of
current views.

Many of our direct determinations of the expansion rate rely on the luminosity-
distance formula (8,123) applied 10 some type of object whose intrinsic luminos-
ity is assumed e be known, which we call standard candles, {Occasionally we
measure the angular diameters of objects whose intrinsic size is assumed 1o be
known: standard rulers.) The Hubble constant, for example, is measured with a
variety ol standard candles, and a consensus of different methods has converged
on the value Hy = 70210 knv'sec/Mpe, mentioned above. Deviations at high red-
shift from the linear Hubble law (8.109) can yield information about the density
parameters 2,0, but only if we have very bright ohjects whose intrinsic luminos-
ity 1s accurately known. These are provided by Type la supernovae, which are
thought to be explosions of white dwarf stars that have acereted enough mass (o
surpass the Chandrasekhar limit, Since the Chandrasekhar limit is close (o univer-
sal, the asseclated explosions are essentially of equal brighiness (and some of the
intrinsic variability can actually be accounted for by following the evolution of
the brightness through time). It was measurements of SNe Ia at redshilts z = (1.3
that provided the first direct evidence for a nonzero cosmological constant; these
observations imply that £2, is actually larger than £2xs. Recall that matter is pres-
sureless, py = 0, whereas vacuum energy is associated with a negative pressure,
Pa = —pa. Plugging mito the second Fricdmann equation (8.68) we find that a
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universe with both matier and A obevs

i dr (7
o === (om — 2pa). (8.155)
&

Thus, it pa is sufficiently large compared 10 py (as the supernova observations
indicate), we can have 4 = (), an accelerating universe (in the sense described in
Section 8.4).

The matter density itsell is measured by a variety of methods, often involving
measuring the density oy by looking for the gravitational effects of clustered
matter and then extrapolating to large scales. Because py = (3H? /87 G )€y,
limits obtained in this way are often quoted in terms of Qyh?, where h is defined
in (8.70). These days the uncertainty en Hy appears to be small enough that it 1s
fairly safe to take i% 2 0.5, which we do henceforth, Most contemporary methods
are consistent with the result

Qv = 0.3 £ 0.1, (8.156)

Before there was good evidence for a cosmological constant, this low mater
density was sometimes taken as an indication that space was negatively curved,
i = (O

In addition to matter and cosmological constant, we also have radiation in the
universe. Ordinary photons are the most obvious component of the radiation den-
sity, but any relativistic particle would contribute, For photons, most of the en-
ergy density resides in the cosmic microwave background, the leftover radiation
from the Big Bang. Besides photons, the only ebvious candidates for a radiation
component are neutrinos. We expect that the number density of relic background
neutrinos 15 comparable o that of photons; the photon density is likely to be some-
what larger, as photons can still be created after the number of neutrinos has be-
come fixed. However, if the mass of the neutrinos is sufficiently large (greater
than about 107% ¢V), they will have become nonrelativistic today, and contribute
to matter rather than to radiation. Current ideas aboul neutrino masses suggest
that this probably is the case, but it is not perfectly clear. Furthermore, it is con-
ceivable that there are as-yet-undetected massless particles in addition to the ones
we know about (although they can’t be too abundant, or they would suppress the
formation of large-scale structure. ) Altogether, it seems likely that the wotal radia-
tion density is of the same order of magnitude as the photon density; in this case
we would have

Cpo ~ 1074, (8.157)

As mentioned before, it 15 not surprising that the radiation density is lower than
the matter density, as the former decays more rapidly as the universe expands.
The radiation density goes as @ —*, while that in matter goes as @ *; so the epoch
of matter-radiation equality occurred at a redshift

e DML s o 105, (8.158)

Zeg ~ o 5
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A further crucial constraint on the cosmological parameters comes {rom
anisotropies in the temperature of the microwave background. The average tem-
perature is Toyp = 274K, butin 1992 the COBE satellite discovered fuctoations
from place to place at a level of AT/T ~ 107%, These anisotropies arise from a
number of sources, including gravitational redshift/blueshift from photons mov-
ing oul of potential wells at recombination (the Sachs—Wolle effect, dominant on
large angular scales), intrinsic temperature fluctuations at the surface of last scat-
tering (deminant on small angular scales), and the Doppler effect from motions of
the plasma. The physics describing the evolution of CMB anisotropies is outside
the scope of this book. A map of the CMB temperature over the entire sky clearly
contains a great deal of information, bul no theory predicts what the temperature
at any given point is supposed 1o be. Instead, modern theories generslly predict
the expectation value of the amount of anisotropy on any given angular scale. We
theretore decompose the anisotropy field into spherical harmonics,

arT :
—(0,9) = %am Yim (6. ). (8.159)

The expectation value of letim | 15 likely to be independent of mi; otherwise the
statistical characteristics of the anisotropy will change from place 1o place on
the sky (although we should keep an open mind). The relevant parameters 10 be
measured are therelore

Cp= '”flnﬂ-l::" (8. 160)

Since for any fixed [, there are 2/ 4+ 1 possible values of m (from —/ 10 1), at
all but the lowest ['s there are enough independent measurements of the gy, s to
accurately determine their expectation values. The irreducible uncertainty at very
small [ is known as cosmic variance.

Numerous experiments have measured the C)'s (the so-called CMB power
spectrum), and improving these measurements is likely to be an important task
for a number of years, (In addition to the temperature anisotropy, a great deal of
information is coptained in the polarization of the CMB, which is another target of
considerable experimental effort,) To turn these observations into useful informa-
tion, we need a specific theory to predict the CMB power spectrum as a function
of the cosmoelogical parameters. There are two leading possibilities (although one
is much more leading than the other); either density perturbations are imprinted on
all scales at extremely early times even modes for which the physical wavelength
A was much larger than the Hubble radins H ™ ! or local dynamical mechanisms
act as sources for anisotropies at all epochs. The latter possibility has essentially
been ruled out by the CMB data: if anisotropies are produced continuously, we
expect a relatively smooth, featureless spectrum of C)'s, whereas the observations
indicate a significan! amount of structure. [t is therefore much more popular to
imagine a primordial source of perturbations, such as inflation (discussed in the
next section). Inflationary perturbations are adiabatic—perturbations in the mat-
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ter density are correlated with those in the radiation density—and of nearly equal
magnitude at all scales. With this input, we can make definite predictions for the
"5 as a function of all the cosmological parameters. Perhaps the most significant
constraint obtained from experiments thus far is that umiverse 1s spatially Hat, or
nearly 5oy [S2e0! < 0,1, Combined with the measurements of the matter density
£y == 0.3, we conclude that the vacuum energy density parameter should be

Qao=07+0.1, (B.161)

This is nicely consistent with the Type Ia supernova results described above: the
concordance picture described here is that indicated in Figure 8.4, Converling
from density parameter to physical energy density using Hy = 70 kmfsee/Mpe
yields

Pyae = 107 8 crg#'cm‘l. (8.162)

as mentioned in our discussion of vacuum energy in Section 4.5.

One more remarkable teature completes our schematic picture of the present-
day universe. We have mentioned that about 30% of the energy density in our
universe consists of matter. But 10 a cosmelogist, “matter” is any collection of
nonrelativistic particles; the matter we infer from its gravitational influence need
not be the same kind of ordinary matter we are familiar with from our experience
on Earth. By ordinary matter we mean anything made from atoms and their
constituents (protons, neutrons, and electrons); this would include all of the stars,
planets, gas, and dust in the universe, immediately visible or otherwise, Gecasion-
ally such matter is referred to as barvonic matter. where baryons include protons,
neutrons, and related particles (strongly interacting particles carrying a conserved
guantum number known as baryon number). Of course electrons are conceptually
an important part of ordinary matter, but by mass they are negligible compared to
protons and neutrons:

mp = 0.938 GeV
m, = 0.940 GeV
me = 0.511 % 1077 GeV, (8.163)

In other words, the mass of ordinary matter comes overwhelmingly from baryons.

Ordinary baryonic matter. it turns out, is not nearly enough to account for the
observed density €2y =~ 0.3, Our current best estimates for the baryon density
vield

2y = 0.04 £0.02, (8.164)

where these error bars are conservative by most standards, This determination
comes from a variety of methods: direct counting of baryons (the least precise
method), consistency with the CMB power spectrum (discussed above), and
agreement with the predictions of the abundances of light elements for Big-Bang
nuclecsynthesis (discussed below), Most of the matter density must therefore be
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in the form of nonbaryonic dark matter, which we will abbreviate w simply
“dark matter” (Baryons can be dark, but it is increasingly common (o reserve the
terminology for the ponbaryonic compenent.) Essentially every known particle
in the Standard Model of particle physics has been ruled out as a candidate for
this dark matter. Fortunately, there are a number of plausible candidates beyond
the Standard Model, including neutralinos (the lightest of the additional stable
particles predicted by supersymmetry, with masses > 100 GeV) and axions (light
pseudoscalar particles arising from spontaneous breakdown of a hypothetical
Peceei-Quinn symmetry invoked to explain conservation of CP in the strong
interactions, with masses ~ 10~* V). One of the few things we know about
the dark matter is that it must be cold—not only is it nonrelativistic today, but
it must have been that way for a very long time. If the dark matter were hot, it
would have free-streamed out of overdense regions, suppressing the formation
of galaxies. The other thing we know about cold dark matter (CDM) is that it
should mteract very weakly with ordinary matter, so as (0 have escaped detection
thus far. Nevertheless, ambient dark matter particles may occasionally scatler
off carefully shielded detectors in terrestrial laboratories: the attempt to directly
detect dark matter by searching for the effects of such scatterings will be another
significant experimental effort in the years to come.

The picture in which £y = 0.3 and £24 = 0.7 seems o At an impressive
variety of observational data: The most surprising part of the picture is the cos-
mological constant, In Chapter 4 we mentioned that a naive estimate of the vac-
uurm energy yields a result many orders of magnitude larger than what has been
measured. In fact there are three related puzzles: Why is the cosmological con-
stant s¢ much smaller than we expect? What is the origin of the small nopzero
energy that comprises 70% of the current universe? And. why is the current value
of the vacuum energy of the same order of magnitude as the matter density? The
last problem 1s especially severe, as the vacuum energy and matter density evolve
rapidly with respect to each other;

—_— X, (®.165)

If $2p und €24 are comparable today, in the past the vacuum energy would have
been undetectably small, while in the future the matter density will be negligible.
This “coincidence problem”™ has thus far proven 1o be a complete mystery. One
suggested selution involves the “anthropic principle” If there are many distinet
parts of the universe (in space, or even in branches of the wavefunction) in which
the cosmological constant takes on very different values, melligent life is most
likely to arise in those places where the abselute magnitude is not too large—a
large positive A would tear particles apart before galaxies could form, while a
large negative A would cause the universe to recollapse before life could evolve,
The anthropic explanation of the observed vacuum energy provides a good fit to
the data, although the need 1o invoke such an elaborate scheme 1o explain this one
guantity strikes some as slightly extravagant.
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Another possibility that may (or may not) bear on the coincidence problem is
the idea that we have not detected a nonzero cosmological constant, but rather a
dynamical component that closely mimics the properties of vacuum energy. Con-
sideration of this possibility has led cosmologists o com the term dark energy
o describe whatever it is that has been detected, whether 1t is dynamical or turns
out to be a cosmological constant after all. What we know about the dark energy
15 that it is relatively smoothly distributed through space (or 11 would have been
detected through its Tocal gravitational field, just like dark matter) and is evolving
slowly with time (or it would not make the universe accelerate, as indicated by
the supernova data). A simple candidate for a dynamical source of dark energy 18
provided by a slowly-rolling scalar field. Consider a field ¢ with the usual action

- :
§= f{r‘x\ffg [ 58" VudVoeh ~ V{qﬁ:]. (%.166)
for which the energy-momentum tensor is

Tyy = V@V + [%y""vuwaeﬁ - maj} guv (R.167)

and the equation of motion 1§

iV :
h— — =1L :
I e ( (H.168)

Assume that the field is completely homogeneous through space (8¢ = 0), Then
using the Christoffel symbols (8.44), we may express the d" Alembertian in terms
of time derivatives and the Hubble constant to write (8. 168) as

= e dV

¢+3H¢J+E—'ﬂ'. (8.169)
We see that the Hubble parameter acts as a friction term; the field will wend 1o roll
down the potential, but when H is oo large the motion will be damped, Therefore,
a scalar field with a sufficiently shallow potential (as portrayed in Figure 8.6) will
roll very slowly, leading (o a kinetic energy much smaller than the potential energy
Vi), The energy-momentum tensor is then

T;u' =% _Vtﬂ‘”.ﬁ';w- (8.170)
where ¢ = constanl. Comparing to (4.96), we see that the scalar field potential
1s mimicking a vacuum energy. As a simple example consider a quadratic po-
tential, V() = —}mzqf::. Then (8.169) describes a damped harmonic oscillator,
and overdamping will occur if H = m. But in particle-physics units, the Hubhble
constant today is Hy = 107" eV, so the mass of this scalar field would have 1o
be incredibly tiny compared 10 the masses of the familiar elementary particles in
equation (8.163 ). This scems to be an unnatural fine-tuning. Nevertheless, models
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of dvnamical dark energy are being actively explored, partially in the hope that
they will lead somehow 1o a solution of the coincidence problem.

With this view of the contemporary situation, we can imagine what the carly
universe must have been like to have produced what we see today. For purposes
of physical intuition it s often more helpful to keep track of the era under consid-
eration by indicating the temperature rather than the redshift or time since the Big
Bang. The temperature today is

To=274K =24 x 107* eV, (£.171)

Of course, by “temperature” we mean the apparent blackbody temperature of the
cosmic microwave background; in fact the CMB has not been in thermal equi-
librium since recombination, so one should be careful in taking this concept too
literally. Under adiabatic expansion, the temperature decreases as cach relativistic
particle redshifts, and we have 7 o a~'. But there will be nonadiabatic phase
transitions a1 specilic moments in the carly universe: in such circumstances the
temperature doesn’t actually increase, but decreases more gradually, To help relate
the temperature, density, and scale factor, we introduce two different measures of
the effective number of relativistic degrees of freedom: g. and g5 (where §
stands for entropy ). Consider a set of bosonie and fermionic species, each with
their own effective temperature 75, and number of spin states g;. For example, a
massless photon has two spin states, so g, = 2; a massive ﬁpin-% lermion also
has two spin states, so g.- = g.- = 2. The two different versions of the effective
number of relatvistic degrees of freedom ohey

T; 4 = 1; 4
.= Z g (?) +§ Z ,1;;(?) (B.172)

hL‘HDﬂb fermions

and

Hy° 7 n\? .
ges= ). & (?) ¥z X a(?) : (8.173)

bosons fermions
The mysterious factors of ¢ arise from the difference between Bose and Fermi

statistics when calculating the equilibrium distribution function, For any species
in thermal equilibrium, the temperature T; will be equal to the background tem-
perature 7 but we might have decoupled species at a lower temperature. which
contribute less to the effective number of relativistic degrees of freedom. The rea-
son why we need o define two different measures is that they play different roles;
the first relates the temperature to the energy density (in rélativistic species) via

7.

=L a7 8.174
PR = 3"['}3; B [®, )

while the second relates the temperature 1o the scale factor,

=1/3._

Txg.c'a (8.175)
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In fact, g. and g, ¢ are expected 10 be approximately equal so long as the rela-
tivistic degrees of freedom are those of the Standard Model of particle physics. A
very rough guide is given by

1 T = 300 MeV
Be @ 2ey ~ 110 30OMeV > T > | MeV (B.176)
3 T = 1 MeY.

As we will discuss shortly, the events that change the effective number of rel-
ativistic degrees of freedom are the QCD phase transition at 300 MeV, and the
annihilation of electron/positron pairs at 1 MeV.

With this background, let us consider the evolution of the universe from early
times to today. To begin we imagine a Robertson-Walker metric with matter
fields in thermal equilibrium at a temperature of 1 TeV = 1000 GeV. The high-
temperature plasma is a comphicated mixiure of elementary particles (quarks, lep-
tons, gauge and Higgs bosons). The dominant form of energy density will be rela-
tivistic particles, so the early universe is radiation-dominated. It is also very close
to flat, sinee the curvature teem in the Friedmann equation evolves more slowly
than the matter and radiation densities, The Friedmann equation is therelore

Bals
H:=""p)p
3

;r4
2 0.1g.—, (8.177)

i,
where the reduced Planck scale is mp = (87G)~'/? = 10'S GeV. If the radiation-
dominated phase extends back to very early times, the age of the universe will be

approximately ¢ ~ H~ ' or

s '}’,’,—P (8.178)
In conventional wunits this becomes
2
GeV
t~ 1078 (T) SEL, {8.179)

Current experiments at particle accelerators have provided an accurate picture
of what physics is like up to perhaps 100 GeV, so an additional order of magnitude
is within the realm of reasonable extrapolation. At higher temperatures we are
less sure what happens; there might be nothing very interesting between 1 TeV
and the Planck scale, or this regime could be filled with all manner of surprises,
OF course it 1s also concelvable that cosmoelogy provides surprises at even lower
temperatures, even though the Standard Model physics is well understood: in this
section we are describing a conservative scenario, but as always it pays (o keep an
open mind,
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A crucial feature of the Standard Model is the spontaneously broken sym-
metry of the electroweak sector, In cosmology, this symmetry breaking occurs
at the electroweak phase transition, at T ~ 200 GeV. Above this emperature
the symmuetry is unbroken, so that elementary fermions (quarks and leptons) and
the weak interaction gauge bosons are all massless, while below this temperature
we have the pattern of masses familiar from low-energy experiments. The elec-
troweak phase transition is not expected o leave any discernible impact on the
late universe; one possible exception is baryogenesis, discussed below,

Al these temperatures the strong interactions described by guantum chromo-
dynamics (QCD) are not so strong. At low energies/temperatures, QUD exhibits
“centinement”—quarks and gluons are bound inte composite particles such as
haryons and mesons. But above the QUD scale Agep ~ 300 MeV, quarks and
gluons are free particles. As the universe expands and cools, the conflinement of
stronglv-interacting particles into bound states is responsible for the first drop in
the effective number of relativistic degrees of freedom noted in (8, 176), The QCD
phase transition 15 not expected o leave a significant imprint on the observable
UNIverse.

Just as the stropg interactions are nol very strong at high temperatures, the
weak interactions are not as weak as you might think; they are still weak in the
sense of being accurately deseribed by perturbation theory, but they occur rapidly
enough to keep weakly-interacting particles, such as neutrinos, in thermal equi-
librium. This ceases to be the case when T ~ 1 MeV. This is also approximately
the temperature al which electrons and positrons become nonrelativistic and anni-
hilate, decreasing the effective number of relativistic degrees of freedom, but the
two gvents are unrelaied. For temperatures below 1 MeV, we say the weak interac-
tions are “frozen out™—the interaction rate drops below the expansion rate of the
universe, so interactions happen too infrequently o keep particles in equilibrium.
It may be the case that cold dark matter particles decouple from the plasma at this
temperature. More confidently, we can infer that neutrons and protons cease 10
interconvert. The equilibrium abundance of neutrons at this temperature is about
% the abundance of protons (due to the slightly larger neutron mass). The neutrons
have a finite lifetime (1, = 890 sec) that is somewhat larger than the age of the
universe at this epoch, 1(1 MeV) == | sec, but they begin to gradually decay into
protons and leptons. Soon thereafter, however, we reach a temperature somewhat
below 100 keV, and Big-Bang Nucleosynthesis (BBN) begins.

The nuclear binding energy per nucleon is typically of order 1 MeV, so you
might expect that nucleosynthesis would occur earlier; however, the large num-
ber of photons per nucleon prevents nucleosynthesis from taking place until the
temperature drops below 10 keV. At that point the neutrondproton ratio is approx-
imately ; OF all the light nueler, 1t 1s energetically favorable for the nucleons to
reside in *He, and indeed that is what most of the free neutrons are converted into;
tor every two neutrons and founteen protons, we end up with one helium nucleus
and twelve protons, Thus, about 25% of the baryons by mass are converted to
helium. In addition, there are trace amounts of deuterium (approximately 1072
deuterons per proton), * He (also ~ 107%), and "Li (~ 1071%).
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Of course these numbers are predictions, which are borne out by ohservations
of the primordial abundances of light elements. (Heavier elements are not svn-
thesized in the Big Bang. but require stellar processes in the later universe.) We
have glossed over numerous crucial details, especially those that explain how the
different abundances depend on the cosmological parameters. For example, imag-
ine that we deviate from the Standard Model by introducing more than three light
neutrino species. This would increase the radiation energy density at a fixed tem-
perature through (8.174), which in turn decreases the timescales associated with
a given temperature (since 1 ~ H™' p;'ﬁzi- Nucleosynthesis would there-
fore happen somewhat carlier, resulting in a higher abundance of neutrons, and
hence in a larger abundance of *He. Observations of the primordial helium abun-
dance, which are consistent with the Standard Model prediction, provided the
first evidence that the number of light neutrinos is close to three. Similarly, all of
the emperatures and tUmescales associated with nucleosynthesis depend on the
baryon-to-photon ratio; agreement with the observed abundances requires that
there be approximately 5 x 107" baryons per photon, which is the origin of the
estimate (8.164) of the barvonic density parameter, and the associated need for
nonbaryonic dark matter.

For our present purposes, perhaps the most profound feature of primordial nu-
cleosynthesis 15 1ts sensitive dependence on the Friedmann relation between lem-

BBN provides a stringent test of GR in a regime very far from our everyday ¢xpe-
rience. The fact that Einstein’s theory, derived primarily from a need to reconcile
gravitation with invariance under the Lorentz symmetries of cleciromagnetism,
successiully describes the expansion of the universe when it was only one second
old is a truly impressive accomplishment. To this day, BBN provides one of the
most powerful constraints on alternative theories of gravity; in particular, it is the
ecarliest epoch about which we have any direct ohservational signature.

Subsequent to nucleosynthesis, we have a plasma dominated by protons, elec-
trons, and photons, with some helium and other nuclet, There is also dark matter,
but it is assumed noet 1o interact with the ordinary matter by this epoch. The next
important event isn't until recombination, when electrons combine with protons
{they combine with helium slightly earlier). Recombination happens at a temper-
ature T == 0.3 eV; at this point the universe is matter-dominated, Again, since the
binding energy of hydrogen is 13.6 eV, you might expect recombination (o occur
earlier. but the large photon/baryon ratio delays it. The crucial importance of re-
combination is that 1t marks the epoch at which the universe becomes transparent.
The ambient photons interact strongly with free electrons, so that the photon mean
free path is very short prios to recombination, but it becomes essentially infinite
onee the electrons and protons combine into neutral hydrogen, These ambicent
photons are visible today as the cosmic microwave background, which provides
a spapshot of the universe at T = (1.3 eV, or a redshift z = 1200. Recombina-
tion is a somewhat gradueal process. so any specilication of when it happens is
necessarily approximate.



5.8 ®

8.8 Inflation 365

Subsequent to recombination, the universe passes through a long period known
as the “dark ages,”” as galaxies are gradually assembled through gravitational in-
stability, but there are as yet no visible stars to light up the universe. The dark ages
are a mysterious time; the processes by which stars and galaxies form are highly
complicated and nonlinear, and new Kinds of observations will undoubtedly be
necessary before this era is well understood.

Our story has now brought us to the present day, but there are a couple of miss-
ing points we should go back and fill in. One is the asymmetry between matter
and antimatter in the universe. Essentially all of the visible matter in the uni-
verse seems 10 be composed of protons, neutrons, and electrons, rather than their
antiparticles; if distant galaxies were primarily antimatter, we would expect 1o
observe high-energy photons from the occasional annihilation of protons with an-
tiprotons at the boundaries of the matter/antimatter domains, While it is possible
to build in an asymmetry as an initial condition, this seems somchow unsatisfying,
and most physicists would prefer to find a dynamical mechanism of baryogene-
sis by which an mitially matterfantimatter symmetric state could evolve into our
present universe. Such broken symmetries are commeon in particle physics, and
indeed numerous mechanisms for baryogenesis have been proposed (generally at
temperatures al or above the electroweak scale), None of these specific schemes,
however, has proven sufficiently compelling (o be adopted as a standard scenario,
[t seems probable that we will need a better understanding of physics bevond the
Standard Model 1o understand the origin of the baryon asymmetry.

The other missing feature we need o mention is that the universe is not, of
course, perfectly homogeneous and iseiropic; the current large-scale struciure in
the universe seems to have evolved from adiabatic and nearly scale-tree periur-
bations present al very early times al the level of dp/p ~ 1077, Evidence for
the adiabatic and scale-free nature of these perturbations comes Irom a combina-
tion of observations of the CMB and large-scale structure. Both the high degree
of isotropy and homogeneity, and the small deviations therefrom, are simply im-
posed as mysterious initial conditions in the conventional cosmology. A possible
dynamical origin for both is provided by the inflationary-universe scenario, to
which we now turn.

INFLATION

In the conventional understanding of the Big-Bang moedel, the universe is taken
to be radiation-dominated at carly nmes and matter-dominated at late times, with,
as we now suspect, a very late transition to vacuum-domination, This picture has
met with great success in describing a wide variety of observational data: never-
theless, we may still ask whether the initial conditions giving rise such a universe
seem natural. This is the kind of question one might ask in cosmology but not
in other sciences. Typically, as physicists we look for laws of nature, and imag-
ine that we are free to specify initial conditions and ask how they evolve under
such laws. But the universe seems to have only one set of initial conditions, so'it
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seems sensible to wonder if they are relatively generic or finely-tuned. Within the
conventional picture, the early universe is indeed finely wned o incredible preci-
sion. In particular, two features of our universe seem highly nongeneric: its spatial
flatness. and its high degree of isotropy and homogeneity. It might be that this is
just the universe we are stuck with, and it makes no sense 1o ask about the likeli-
hood of different initial conditions, Alternatively, 1t might be that these conditions
are more likely than they appear at {irst, if there is some dynamical mechanism
that can take a wide spectrum of initial conditions and evolve them toward Rat-
ness and homogeneity/isotropy. The inflationary universe scenario provides such
a mechanism (and more, besides), and has become a central organizing principle
of modern cosmology. even if we are stll far from demonstrating its truth.

Before describing inflation, let’s deseribe the two problems of unnaturalness
it claims 1o solve: the fatness problem and the herizon problem associated with
homogeneity/isotropy. The flatness problem comes from considering the Fried-
mann equation in a universe with matter and radiation but no vacuum energy.
which for later convenience we write in terms of the reduced Planck mass mip =
(87 G) 1% as

5 K
H i = lr,l‘-"'M —- PR} — == {8‘ ! ﬂ”}
3mp as

The curvature term —& /a” is proportional 1o @ (obviously), while the energy
density termes fall off faster with increasing scale aetor, gy o a ~3 and pg ot a t,
This raises the question of why the ratio (xa=%)/(p/3m3) isn’t much larger than
unity, given that a has increased by a factor of perhaps 10° since the Planck
epoch. Said another way, the point £2 = 1 is a repulsive fixed point in a mat-
ter/radiation dominated universe—any deviation from this value will grow with
time, s0 why do we observe £ ~ | woday?

The horizon problem stems [rom the existence of particle horizons in FRW
cosmelogies, as illustrated in Figure 8.7, Honzons exist because there 1s only a fi-
nite amount of time since the Big Bang singularity, and thus only a finite distance
that photons can travel within the age of the universe, as we briefly discussed
in Chapter 2. Consider a photon moving along a radial (rajectory in a fat uni-
verse (the peneralization 10 nonflat universes is straightforward). A radial null
path obeys

0=ds® = —di* + a>dr?, (8.181)
s0 the comoving (coordinate) distance traveled by such a photon between times
1 and t3 1s

T dr
ﬂur:f —_— (8.182)
pnoalt)

To get the physical distance as it would be measured by an observer at any time 1,
simply multiply by a(r). For simplicity let’s imagine we are in a matter-dominated
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FIGURE 8.7 Fast light cones in a universe expanding from a Big Bang singularity, illus-
trating purticle horizons in cosmology. Points at recombination, observed today as parts of
the cosmic microwave background on opposite sides of the sky, have nonoverlapping pasi
light cones {in conventional cosmology); no causal signal could have influenced them to
have the same temperature:

universe, for which

y 213
= () . (8.183)
Iy

Remember ag = 1. The Hubble parameter is therefore given by

H=1

=a~ 2 Hy. (8.184)

Then the photon ravels a comoving distance

Ar =24y (Va2 - Jar). (8.185)

The comoving horizon size at any fixed value of the scale factor a = a, is the
distance a photon ravels since the Big Bang,

Fhorltie ) = EH[;_l-w,-’rﬂE- (8.186)

The physical horizon size. as measured on the spatial hypersurface at a.. is there-
fore simply

dhor(@y) = aurpaslas) = 20, (8.147)

Indeed, for any nearly-flat universe containing a mixture of matter and radiation,
al any one epoch we will have

dhorlds) ~ HV = dy(a.), (8.188)
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where the Hubble distance dy was introduced in (8.7 1), This approximate equal-
ity leads to a strong temptation to use the terms “horizon distance” and “Hobble
distance™ mterchangeably; this temptation should be resisted, since inflation can
render the former much larger than the latter, as we will soon demonstrate.

The horizon problem is simply the fact that the CMB is jsotropic to a high
degree of precision, even though widely separated points on the last scattering
surface are completely outside each others’ horizons. When we look at the CMB
we are observing the universe at a scale factor agyp = 1/ 1200; from (8. 185), the
comoving distance between a point on the CMB and an observer on Earth is

ar =2H; " (1 - Vacws)
~2H ! (8.189)
However, the comoving horizon distance for such a point is
rhorlacme) = 2H, ' Jacws
6% 1072 H; (8.190)

Hence, if we observe two widely-separated pants of the CMB, they will have
nenoverlapping horizons; distinet patches of the CMB sky were causally dis-
connected at recombination. Nevertheless, they are observed o be at the same
temperature 1o high precision. The question then is, how did they know ahead of
time 10 coordinate their evolution in the right way, even though they were never in
causal contact? We must somehow medify the causal structure of the conventional

FEW cosmology.
Let's consider modifying the conventional picture by positing a period of in-
flation: an era of acceleration (4 = ) in the very carly universe, driven by

some component other than matter or radiation that redshifts away slowly as
the universe expands. Then the flainess and horizon problems can be simultane-
ously solved. For simplicity consider the case where inflation is driven by a con-
stant vacuum energy, leading to exponential expansion, Then, during the vacuum-
dominated era, p/ 3n’t§ x a" grows rapidly with respect to —& /a®, so the universe
becomes flatter with time (£2 is driven to unity). If this process proceeds for a suf-
ficiently long period, after which the vacuum energy is converted inte matter and
radiation, the density parameter will be sufficiently close 1o unity that it will not
have had a chance to noticeably change into the present era. The horizon problem,
meanwhile, can be traced 1w the fact thal the physical distance between any two
comoving objects grows as the scale factor, while the physical horizen size in a
matter- or radiation-dominated universe grows more rapidly, as dyo, ~ a"/*H,
This can again be solved by an early period of exponential expansion, in which
the truee horizon size grows (o a fantastic amount, so that our horizon today is
actually much larger than the naive estimate that it is equal to the Hubble radius
Hy'!

In fact. a truly exponendial expansion is nol necessary: for any accelerated ex-
pansion, the spatial curvature will diminish with respect o the energy density,
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and the horizon distance will grow rapidly. Typically we require that this acceler-
ated period be sustained for 60 or more e-folds (where the number of ¢-folds is
N = Alna) which is what is needed to selve the horizon problem. [t is easy o
overshoot, and inflation generally makes the present-day universe spatially flat to
incredible precision.

Now let's consider how we can get an inflationary phase in the carly universe,
The most straightforward way 1s 1o use the vacuum energy provided by the po-
tential of a scalar field, the inflaton. Imagine a universe dominated by the energy
of a spatially homogeneous scalar, The relevant equations of motion are precisely
those of our discussion of dynamical dark energy in Section 8.7; the only differ-
ence is that the energy scale of inflation is much higher, We have the equation of
motien for a scalar field in an RW metric,

b+ 3Hd + V() =0, (8.191)

as well as the Friedmann equation,

2 1 1.
HY= — (_¢,2+V{¢}). (8.192)
I, 2

We have ignored the curvature term, since inflation will flauen the universe any-
way. Inflation can oceur if the evolution of the field is sufficiently gradual that the
potential energy dominates the kinetic energy, and the second denvative of ¢ 1s
small encugh to allow this state of affairs to be maintained for a sufficient period.
Thus, we want

¢ < Vi),
gl < |3HI, V'], (8.193)

Satislying these conditions requires the smallness of two dimensionless quantities
known as slow-roll parameters:

v 2
()
4 (8.194
(v) o

Note that € = 1), while 5 can have cither sign. Note also that these definitions are
not universal; some people like (o define them in terms of the Hubble parameter
rather than the potential. Our choice deseribes whether a field bas a chance (0
roll slowly for a while; the deseription in terms of the Hubble parameter describes
whether the field actually is rolling slowly, When both of these quantities are small
we can have a prolonged inflationary phase. They are not sufficient, however: no
matter what the potential looks like, we can always choose initial conditions with
¢| so large that slow-roll is never applicable. However, most initial conditions are
attracted to an inflationary phase if the slow-roll parameters are small.

E==m

L]

!
2

o

n=m
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It isn't hard to invent potentials that satisty the slow-roll conditions, Consider
perhaps the simplest possible example,” V(g) = %mzrﬁrz. In this case

-

i (8.195)
FER 98
Clearly. for large enough ¢. we can gel the slow-roll parameters to be as small as
we like. However, we have the constraint that the energy density should not be as
high as the Planck scale, so that cur classical analysis makes sense; this implies
¢ <« Jﬂzp,-fm. If we start the field at a value ¢, the number of e-folds before
inflation ends (that s, belore the slew-roll parameters become of order unity ) will

be

o

E==

(8.196)

The first equality is always true, the second uses the slow-roll approximation, and
the third 15 the result for this particular model, To get 60 e-folds we therefore
need ¢; = l6mp, Together with the upper limit on the energy density, we lind
that there is an upper limit on the mass parameter, m << mp/16. In fact the size
of the observed density fluctuations puts a more stringent upper limit on m, as
we will discuss below. But there is no lower limit on m, so it is casy to obtain
appropriate inflationary potentials only if we are willing o posit large hierarchies
m <& mp, or cquivalently a small dimensionless number m /mp. Going through
the same exercise with a A¢* potential would have vielded a similar conclusion,
that 4 would have had 10 be quite small; we often say that the inflaton must be
weakly coupled. Of course, there is a sense in which we are cheating, since for
field values ¢ > mp we should expect additional terms in the effective potential,
of the form ri'r‘;"“.;::-" with n = 4, to become important. 50 in a realistic model 1t
can be quite hard 10 get an appropriate potential,

Al some point inflation ends, and the energy in the inflaton potential is con-
verted into a thermalized gas of matter and radiation, a process known as “reheat-
ing.” A proper understanding of the reheating process is of utmost importance,
as it controls the production of various relics that we may or may not want in
our universe. For example, one important beneficial aspect of inflation is that il
can “inflate away™ various relics that could be produced in the early universe,
but are not observed today. A classic example oceurs in the context of grand uni-
fied theories of particle physics, which generically predict the existence of super-

*We follow  the exposition in AR, Liddle, “An Introduction to Cosmelogical Inflation.”
httpr/farxiv. org/astro-ph/9901124.
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heavy magnete monopoles, with an abundance many orders of magnitude greater
than allowed by observations. Historically, the monopole problem was the pri-
mury motivation for the invention of inflatton by Guth; solutions 10 the flatness
and horizon problems were considered a bonus, Inflation can dilute the monepole
abundance appropriately, but they will be produced anew if the universe reheats to
above the temperature of the grand-unification phase transition; fortunately, this
is not & stringent constraint on most models. Similar considerations apply to other
unwanted relics; in supersymmetric models, an especially worrisome problem is
raised by the abundance of gravitinos (supersyimmeltric partners of the graviton).
At the same time, it is necessary to reheat to a sufficiently high temperature to
allow for some sort of barvogenesis scenario. For any specific implementation
of inflation within a particle-physics model, it is crucial (o check that unwanted
relics are dispersed while wanied relics {such as baryons) are preserved,

A crucial element of inflationary scenarios is the production of density pertur-
bations, which may be the origin of the CMB temperature anisotropies and the
large-scale structure in galaxies that we observe today. The idea behind density
perturbations generated by inflation is fairly straightforward. Inflation will attenu-
ate any ambient particle density rapidly w zero, leaving behind only the vacoum,
But the vacuum state in an accelerating universe has a nonzero temperature, the
Gibbons—Hawking temperature, analogous to the Hawking temperature of a black
hole. We won't be able to explore this subject in detail; here we simply outline
the basic results,

For a universe dominated by a potential energy Vo the Gibbons-Hawking em-
perature is given by

H yi?

Togg= — ~ —.
GH W g

(B.197)

Corresponding to this temperature are fluctuations in the inflaton field ¢ at each
wavenumber &, with magnitude

|Adlk = Tau. {%.198)

Sinee the potential is by hvpothesis nearly at, the fuctuations in ¢ lead (o small
fluctuations in the energy density,

sp = V(). (8.199)

Inflation therefore produces density perturbations on every scale. The amplitude
of the perturbations is nearly equal at each wavenumber, but there will be slight
deviations due to the gradual change in V as the inflaton rolls, Describing the per-
turbations is a messy subject, involving countless different notations. A sensible
place to start is root-mean-square (RMS) density fluctuation,
o
ol (fﬁ-’) . (8.200)
# lrms \ P
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where the angle brackets represent an average over spatial locations. For statisti-
cally isotropic perturbations (the expected amplitude is independent of direction),
a bit of Fourier analysis allows us to write

spl \°
(.’3 ) =f¢-fm;u_1nm. (8.201)
P Fims
where we have introduced the dimensionless power spectrum,
; k:l i 2
Ay =S R (8.202)
2n*

and 4 is the expectation value of the Fourier wransform of the fractional density
perturbation,

I il
B = s fr*""‘—‘r-’d-‘,x, (8.203)
(2 )32 o

which we've assumed to be isotropic. The dimensionless power spectrum is a
function of time, as the amplitude for each mode evolves; it is most common
w express the predictions of any specific model in terms of the amplitude of the
perturbations al the moment when the physical wavelength of the mode, 4 = a/k,
is equal to the Hubble radius #~',

AZth) = A% k) : (8.204)
k=al
Thus, As(k) measures the amplitude for different modes at different times. For
inflation driven by a slowly-rolling scalar ficld, As(k) 1s related 1o the potential
via
5 v3 Vv
AE{:{.] Sy _U—W o -_—4— " {3:‘1{}5]
mP{ ) k=aH Wiy
We have intentionally suppressed dimensionless numerical factors, which differ
widely from reference to reference, in favor of highlighting the dependence on
the potential.

The spectrum is given the subscript “8” because it describes sealar fluctuations
in the metric. These are tied o the energy-momentum distribution, and the density
fluctuations produced by inflation are adiabatic—fuctuations in the density of all
species are correlated. The fluctuations are also Gaussian, in the sense that the
phases of the Fourier modes deseribing Auctuations at different scales are uncor-
related. These aspects of inflationary perturbations—a nearly scale-free spectrum
of adiabatic density Huctuations with a Gaussian distribution—are all consistent
with current obhservations of the CMB and large-scale structure, and new data
scheduled to be collected in years 1o come should greatly improve the precision
of these tesis,
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It is not only the nearly-massless imflaton that is excited during inflation, but
also any other nearly-massless particle. The other important example is the gravi-
ton, which corresponds to tensor perturbations in the metric {propagating excita-
tions of the gravitational feld). Tensor fluctuations have a spectrum

i Vv
A% (k) ~ — ; (8.206)
.H‘iP f—al

Importantly, the tensor amplitude depends only on the potential, not on its deriva-
tives; observations of tensor perturbations would therefore give direct information
about the energy scale of inflation.

For purposes of understanding observations, it is vseful w parameterize the
perturbation spectra in terms of observable guantities. We therefore wrile

AS(k) o k™! (8.207)
and
AFlh) o &7, (8.208)

where ng and ny are the spectral indices. They are related to the slow-rol] param-
eters of the potential by

ng =1 —6e+42n (8.209)
and
nt = —2¢, (82100

In models of the type we have considered (driven by single slowly-rolling scalar
fields), there is a consistency relation relating the amplitudes and spectral indices
of the sealar and wenser modes, It can be expressed in a convention-independent
way as a relation between observable quantities, temperature fluctuations AT due
to the different perturbations, as

a1/13

N 8.211)
@armi - " (

The existence of tensor periurbations is a crucial prediction of inflation that
may in principle be verifiable through observaiions of the polarization ol the
CMB. Polarization is also induced by ordinary density fluctuations, through
the anisotropy of the Thompson scattering cross-section in an inhomegencous
plasma. Fortunately, we can imagine decomposing the polarization vector field
on the sky into a curl-free part { E-modes) and a curl part (H-modes); the scalar
perturbations lead e E-mode polarization, whereas tensor perturbations lead to
H-modes (up to some mevitable processing in the post-recombination universe).
CMB polarization has been detected; the challenge for the future will be to sepa-
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rate oul the sealar and tensor contributions, to test the prediction (8.211) of simple
inflaticnary models. Of course this requires not only detecting the wensor-induced
polarization, but measuring its speciral index with some precisien,

Our current knowledge of the amplitude of the perturbations already gives us
important infermation about the energy scale of inflation. The ensor perturbations
depend on V' alone, not its derivatives: if the CMB anisotropies seen by COBE
are due to tensor fluctuations (possible, although unlikely), we can instantly denve
Vinttaion ~ (1010 GeV)*. Here, the value of V being constrained is that which was
responsible for creating the observed fluctuations; namely, 60 e-folds before the
end of imflation, This is remarkably reminiscent of the grand umification scale,
which is very encouraging. Even in the more likely case that the perturbations
abserved in the CMB are scalar in nature, we can still write

Vit~ €1410% Gev, (8.212)
where € is the slow-roll parameter defined in (3.194). Although we expect € 1o
be small, the | /4 in the exponent means that the dependence on & is guile weak,
unless this parameter is extraordinarily tiny, it is very likely that VIL':]'ZHUH ~ 105,
10'% GeV. The fact that we can have such information about such tremendous
energy scales is a cause for great wonder,

8.9 W EXERCISES

1. Consider an (N +n + 1)-dimensional spacetime with coordinates {1, ' v} where |
goes from 1 to N and i goes from 1 to s Let the metric be

dsd = —dr® 4 r;jir}ﬁu duldy” -i-iuét_.r:I;J,'J'iy}d}"-d_rj. i8.213)

where &; y is the usual Kronecker defta and ;. (v) is the metric on an n-dimensional
maximally symmetric spatial manifeld. Imagine that we normalize the metric ¥ such
that the curvature parameter
Riv)
i o (8.214)
it =1}

is either 41,0, or =1, where R(y) is the Ricci scailar corresponding to the metric p, ;.
{a) Calculate the Ricel tensor for this metric.

(b} Define an energy-momentum tensor in terms of an energy density o and pressure

in the x¥ and y* directions, p'™! and p'*:
Top = p (8.215)
Try =f:2p|""l'é” (8.214)
T = J;ep"”yj_,-_ (B.:217)

Plug the metric and Ty into Einstein’s equations (0 denve Friedmann-like equa-
tions for « and b (three independent eguations in all).
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4.

5.

{¢) Denve Equ.ll‘.lﬂnﬁ. Im‘ the ‘energy density and the two pressures at a static solution
where @ = b = i = b = (), in terms of k, n, and N. Use these ln derive cx-
prcssmns foor the cqu.!l:un -of-state parameters wl: % =p i Soand wo o= P e o
valid at the static solution.

Consider de Sitter space in coordinates where the metric takes the form
ds? = —d1? + a4 dy? + 2P, (8.218)

Solve the geodesic eguation for noncomoving observers (x* not constant) 1o find the
affine parameter as a function of 1, Show that the geodesics reach 1 = —oC in a finlte
affine parameter, demonstrating that these coordinates fail to cover the entire manifold,

In-Appendix F we discuss Raychaudburi's equation, Show that, applied 1o a Robenson-
Walker cosmology, the Raychaudhuri eguation is equivalent 1o the second Friedmann
equation, (8.68),

Consider the best-fit universe, with density parameters Qpg = 1074, Qyo = 0.3,
a0 = 0.7, Make a plot of the three £2;s as a function of the scale factor @, on a log
scale, from a = 1077 10 @ = 10°°, Indicate the Planck time, nucleosynthesis, and
todday.

In a flat spacetime, objects of a fixed physical size subtend smaller and smaller angles
as they are further and further away; in an expanding universe this is not necessarily
son Consider the angular size #(z) of an object of physical size L at redshift 2. In a
matter-dominated flat universe, at what redshift is #(z)/L a minimum? If all galaxies
are at least 10 kpe across {and always have been), what is the minimum angular size
of a galaxy in such a wniverse? Express your result both in terms of Hy, and plugging
in Hy = 70 km/s/Mpe.

In cosmology we tend to idealize nonrelativistic particles as having zero temperature

T and pressure p. In reality, random motions will give them some temperature and

pressure, sabisfying p o T,

(a) How does the pressure of a gas of massive particles decay as a function of the
scale factor?

(b) Suppose neutrinos have a mass my = 0.1 ¢V, and a current temperatre T,y = 2K,
At about what redshift did the neutrinos go from being relativistic 1o nonrelativis-
tic?

Suppose that the universe started out in a state of equiparition at the Planck time (so
that the gnergy density in matter and radiation are of erder the Planck density, and
the temporal and spatial curvature radii are of order the Flanck length). Neglecting
any spatial inhomogeneity, calculate how long a positively curved universe will last,
and how old a negatively curved universe would be when the temperiture reaches 3K,
How old would a flat universe be when the temperature reaches 3K? How old would a
Aat universe be by the time the expansion rate slows o By = 70 km s~ Mpe™ 2
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Quantum Field Theory
in Curved Spacetime

9.1 W INTRODUCTION
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Nobody believes that general relativity is the final word as far as gravity is con-
cerned. The singularity theorems provide internal evidence that the theory is
somehow incomplete; more convineing, however, is the fact that GR is a classical
theory, while the waorld is fundamentally quantum-mechanical, The search for a
working theory of guantum gravity drives a great deal of research in theoretical
physics wday, and much has been learned along the way, but convincing success
remains clusive,

There are two parts 1o general relativity: the framework of spacetime curva-
ture and its influence on matter, and the dynamics of the metric in response (o
energy-momentum (as described by Einstein's equation). Lacking a true theory
of quantum gravity, we may still take the first part of GR—the idea that mauer
fields propagate on a curved spacetime background—and consider the case where
those matter fields are quanium-mechanical. In other words, we 1ake the metric w
be fixed, rather than obeying some dynamical equations, and study quantum field
theory (QFT) in that curved spacetime,

The epochal event in the study of QFT in curved spacetime was Hawking's
realization in 1976 that black holes are not really black, but instead emit thermal
radiation at a Hawking temperature proportional (o the surface gravity &,

— —
; ST (9.1
n

{Recall that our units set A = ¢ = k& = |; the Hawking temperature is actually
proportional to f and inversely proportional to Boltzmann's constant &) Since this
remarkable discovery, QFT in curved spacetime has been put on a fairly rigorous
theoretical fooung, although its range of applhicability is generally thought 10 be
quite far away from any possible experimental probes. The Hawking temperature
of a Schwarzschild black hole, for which & = 1/4G M, can be written

| o (n__s‘ _ P (w _
12 % 10%% (~£) = 6.0 x 105k _) 9.2
% w) b M { )

|||“ = — =
BrGM J

where Mg ~ 10* g is the mass of the Sun. So the radiation from a realistic
astrophysical black hole is at a much lower temperature even than the 3K cosmic
microwave background, and thus would be hopelessly unobservable.
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Recent observations in cosmology, however, have changed this situation some-
what. One example is the apparent discovery that the universe is accelerating,
which is most readily interpreted as evidence for a nonzero vacuum energy
(as discussed in Chapter 8). Although the magnitude of the vacuum energy re-
mains o profound mystery, it seems ¢lear that an understanding of how guantum-
mechanical matter behaves in curved spacetime will play an important role in
any eventual reselution (o the puzele. The other example comes from cosmolog-
ical perturbations. Observations of the microwave background and large-scale
structure provide strong evidence in favor of a nearly scale-free spectrum of pri-
mordial perturbations, including at wavelengths that would be much larger than
the horizon size in a conventional cosmology. The leading theory for the origin
of these perturbations comes from inflation. In the inflationary scenario, cosmo-
logical perturbations originate in the vacuum Auctuations of quantum fields in
an inflating umiverse, If this picture is correct, what we are seeing in maps of the
CMB is the imprint of primordial quantum Quetuations, greatly stretched by the
expansion of the universe, and it is these fluctuations which eventually grew via
gravitational instability into the galaxies and clusters we see today. At the very
least. then, cosmological observations provide strong incentive for the swudy of
QFT in curved spacetime,

Even without this empirical motivation, thought experiments based on QFT in
curved spacetime have proven very fruitful in our tentative explorations of quan-
tum gravity. In particular, the evaporation of black holes as predicied by Hawking
radiation has led 1o the information-loss paradox, which we will discuss below,
Since it is so difficult o do real experiments that bear directly on questions of
quantum gravity, we must rely on thought experiments that focus on the tension
between GR and guanium mechanics, much as Einstein used thought experiments
in his attempts 1o reconcile classical dynamics with the Lorentz invariance of elec-
tromagnetism.

With these considerations in mind. the goal of the present chapter 15 1o provide
a brief introduction to some of the ideas and results of QFT in curved spacetime,
Many introductory GR books do not cover this subject, usually because familiar-
iy with ordinary QFT i flal spacetime should not be a prerequisite for studying
GR. The happy fact is, however, that a familiarity with QFT in flat spacetime is
by no means necessary for studying QFT in curved spacetime, This is because the
leatures of QFT that are most interesting and wselul in flat spacetime arc almost
completely distinet from those that are interesting and useful in curved space-
time. Deep down, a quantum field theory is simply an example of a guantum-
mechanical system, just like a square well or a helium atom. Once a field theory
is defined, applications in flat spacetime (1o particle physics or condensed mat-
ter) will naturally focus on the issue of interactions between the vanous fields,
often treated as perturbations around some natural vacuum state. In curved space-
time, however, we are generally interested in the effects of spacetime itsell on
the tields. for which the interactions are beside the point. We therefore can con-
sider free (noninteracting) fields, but we will have 1o take great care in defining
what an approprigte vacuum state should be, (Indeed, as we will see, almaost all of
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the states we deal with will be vacuum states!) Consequently, knowledge of QFT
in fiat spacetime is not only unnecessary for the present discussion, it probably
won't even be of much help; the only prerequisite is a familiarity with the basics
of ordinary quantum mechanies.

We will gradually work our way up to guantum field theory in curved space-
time, beginning with a review of the quantum mechanics of the system to which
every physicist turns when the going gets rough: the simple harmonic oscillator,
This is, of course, a paradigmatic example of the principles of the workings of
quantum mechanies, but there 15 a bonus: When we next wrn o field theory, we
will find that the quantum mechanics of a free field in Aat spacetime is precisely
that of an infinite number of harmonic escillators, (1t is not that there 15 one os-
cillator at every point in space, but that each mode in the Fourier transform of the
field acts like an harmonic oscillator.) The transition to field theory is then fairly
straightforward. Once we grasp the basics of field theory, given our previous study
of GR, it is not very difficult to generalize to curved spacetme, although 2 num-
ber of subtleties are encoumered along the way. Our discussion will necessarily
be somewhat superficial, focused on the goal of understanding the physical basis
of Hawking radiation through an understanding of the Unruh effect in flar space-
time. In particular, we won't be discussing the important applications of QFT in
curved spacetime 1o cosmology, nor will we be entering into detailed examina-
tion of renormalization and related issues. We will largely follow the discussion
in Birrell and Davies (1982); look there or in Wald (1994) or in the review by
Ford! for further discussion,

QUANTUM MECHANICS

A quantum field theory is just a particular example of a quantum-mechanical sys-
tem, so we can begin by reminding ourselves what that means, OF course, al-
though the world is fundamentally quantium-mechanical, cur intution tends o
align more readily with classical physics, so let’s set the stage by thinking about
classical mechanics. Any physical theory describing a certain system, elassical or
quantum, consists of the answers to three questions:

1. What are the possible states of the system? In classical mechanics, the space
of states s typically given by a set of coordinates and momenta (what we
might think of as “initial conditions™ for the system), They can be specified
exactly, and that is all there 15 10 know about the state of the system.

What can we observe about the system? This guestion is often addressed
only implicitly in classical mechanies, since the answer is tnivial: any func-
tion of the coordinates and momenta qualifies as an observable.

]

3. How does the system evalve? This is usually expressed by a set of equa-
tiens of motion. Given the state and the equations of motion, the subsequent

L. H. Ford, “Quantum field theory in curved spacetime.” (1997), http:/farxiv.org/gr-qe/
STOTO62.
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evolulion is umquely defined; as a result, the space of inittal conditions 13
equivalent to the space of classical solutions to the theary,

To make these ideas more conerete, and also because it will be directly relevant
to our study of field theory, let’s consider the simple harmonic oscillator. A simple
harmonie oseillator may be thought of as a particle in one dimension subject o
a guadratic potential. The state is specified by a single coordinate x, and a single
momentum p. To get the equations of motion, we could start with the Lagrangian,
which is written n terms of x and its tme derivative ¥ as

x2= -13::.1212. (9.3)

L=

Bl

where we have set the mass of the oscillator 1o unity for convenience. We can
immediately derive the equation of motion

F+aix=0, (9.4)
For the transition 1o gouantum mechanics, however, it 1s more convenient to work

in terms of the Hamiltonian, which is a function of x and p rather than x and x.
The Hamiltonian is related 10 the Lagrangian by a Legendre transformation,

H =pi— L, (9.5)
where the momentum satishes
il
)= — = . 9.6
! Py v (9.6}

We therefore have the Hamiltonian for the oscillator,

H= é Pt + ;_';carj,x'i. (.71
and Hamilion's equations
dx dp ,
o =dsH =pi e —th i = —wix, (9.8)

serve as equations of motion. The solutions are, of course, straightforward; it is
useful to express them as complex numbers

) = .I.('u" [€nit-+cig ) ! {(9.9)

where xy s the amplitude and g 15 a phase. We can take the real part @t the end
of the day to get the physical answer,

MNow we turn to quantum mechanics. Although guantum mechanics is pro-
foundly different from classical mechanics, a given theory sull consists of the an-
swers (o the same three guestions listed above, with the answers taking somewhat
different forms.
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L.

-

The state of the system is represented as an element of a Hilbert space.
Mathematically, a Hilbert space is just a complex vector space cquipped
with a complex-valued inner product with the property that taking the inner
product of two states in the opposite order is equivalent w complex conju-
gation. We denote elements of the Hilbert space as [y and elements of the
dual space as (¢ [, so that the inner product of 14 ) and |32} is (W2}, and
oheys

(Walw)® = (g |yfa). (9100

(We are glossing over technical requirements concerning completeness of
the space.) In quantum mechanics the Hilbert spaces of interest are very
often infinite-dimensional. For example, if a classical system is represented
by coordinate v and moementum p, the Hilbert space could be taken to con-
sist of all square-integrable complex-valued functions of x, or equivalently
all square-integrable complex-valued functions of p (but not both at once),

. Ohservables are represented by self-adjoint operators on the Hilbert space.

The defimtion of “self-adjoint” 15 actually very subtle, but in simple circum-
stances amounts to our usual understanding of an Hermitian operator,

A = A, {9.11)
where 4" obevs
(dral Ay} = (AT Pl (9.12)

for all states [y ). [yr2). OF course many operators will not be Hermitian,
but observables should have this property. In general such operators do not
commule, so we cannot simultancously specify the precise values of every-
thing we might want to measure about the system; there will be a complete
set of commuting obscrvables that represents all we can say about a system
at once.

. Evolution of the system may be represented in one of two ways: as unitary

evolution of the state vector 1 Hilbert space (the Schrodinger picture), or
by keeping the state fixed and allowing the observables to evolve according
to equations of motion (the Heisenberg picture),

Strictly speaking, quantum mechanics is just different from classical mechanics;
it is by no means necessary to start with a classical model and “quantize”™ it Nev-
ertheless, we usually do exactly that. Even for simple classical models, there is
more than one way to construct a quantized version; these include canenical quan-
tization and path-integral quantization, as well as more exotic procedures. What
is worse, there 18 no simple map between classical and quantum theories; there
are classical theories with no well-defined quantum counterpart, classical theo-
rics with multiple quantum versions, and quantum theories without any classical



9.2 Quantum Mechanics s

analogue. For our present purposes, we may blithely ignore all of these subtleties,
and proceed directly with canonical quantization,

Onee again, the simple harmonic oscillator provides a vseful example. Con-
sider first the familiar Schrédinger picture, in which states are represented by
complex-valued wave functions that evolve with time, such as Jix, 1). The wave
function is really the set of components of the state vector ), expressed in the
“delta-function position basis™ 1x}, so that W) = .J'* dx iz, 1)|x). Canonical
quantization consists of imposing the canonical commutation relation,

£, pl =i, 9.13)

on the coordinate operator © and its conjugate momentum . For stales repre-
sented as wave functons depending on x and 1, x is simply multiplication by x,
80 (9.13) can be implemented by setting

f=—fdy. (9.14)
The Hamiltonian operator is
H = —%Hf - %ml.\"}. (9.15)
and the equation of motion is the Schridinger equation,

Hy = it (9.16)

Since the Hamiltonian is time-independent, solutions 1o this equation separate
into functions of space and functions of time, Y (x, 1) = f{t)glx). The solu-
tions then come in a discrete set labeled by an mmteger n = 0, and we find {up to
nermalization)

Yulx.t) =" 1/2hax Hy(+/wx)e Bt {9.17)

where H), 15 a Hermite polynomial of degree n, and

= (H - J,)f.u. (Y18}

These states are all cigenfunctions of M, and £, is the energy eigenvalue. An
arbitrary state of the oscillator will simply be a superposition of the energy eigen-
states,

l.ﬂr[.r.r]=Zc‘nt,‘:,,u.:}. (9.19)
"

for some set of appropriately normalized coeflicients ¢,

A number of important features of the quantum-mechanical oscillator are con-
tained in this briel overview. There 15 a discrete specirum of energy eigenstates;
this is why it’s called “quantum™ mechanics feven though it is not hard 1o find
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systems with continuous spectra). There 15 a ground state of lowest energy, plus a
set of excited states uniguely labeled by their energy eigenvalue. The ground state
has a nonvamshing encrgy,

En = iw. (9,200

sometimes called the “zero-point™ energy. It is interesting to note that the min-
imum energy of the classical system would have been zero, representing a par-
ticle with x = 0 and p = 0. The quantum zero-point energy can be traced 1o
the Heisenberg uncertainty principle, which forbids us from localizing a state si-
multancously in both position and momentums; there is consequently a minimum
amount of “jiggle” in the oscillator, leading toa nonzero ground-state energy. On
the other hand, we could certainly have chosen 1o examine an oscillalor with a
patential given by Vix) = %w:.rz - %m; our analysis would have been identical,
exciept that the Factor of % in (9.18) woeuld have been missing, and the ground-state
energy would have been zero, Quantum mechanics does not insist on a nonvan-
ishing rero-point energy. it simply displaces the energy from the classical value.

An alternative way to solve the simple harmonic oscillator 1s to introduce cre-
ation and annihilation operators @” and a (often called raising and lowering oper-
ators), defined by

. 1 . M ot | . "
a8 = wx i p}, a’ = mr —ip), (9.21)
v,-z-;;{ p) EM{ P)
s0 that
o (g By p = 'Ff“ i) (9.22)
X = @ a+da ). P = ;"l' ) o — Li

Given our previous expressions for the commutation relations (9.13) and Hamil-
tonian (9,73, we can easily calculate the commutation relation for the creation and
annihilation operators,

fa, 8 ) =1, (9.23)
and the new expression for the Hamiltonian,
H=(dd+})o. (9.24)
The creation/annihilation operators commute with the Hamiltonian via
|H, ] = —wa
[H.&")=wd’, (9.25)

Comparing this version of the Hamiltonian 1o the energy eigenvalues (9.18), we
are inspired to define 8 number operator

- Fa

i=i'd. i9.26)

)
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Let’s think about why the creation/annihilation operators and the number op-
eralor deserve their names. Consider an eigenstate 1) of the number operator,

A} = nln), {9.27)

where the 71 on the left stands for the number operator, while the first n on the
right stands for the actual number n. (This formula is the most charming in all
of quantum mechanics.) By playing with the commutation relations, it is easy to
show that

Ad’jn) = (n+ Da'in)

aalny = (n— Daln). (9.28)

Thus, when @™ acts on |n), it gives another eigenstate of 7 with eigenvalue raised
by 1, while @ gives an eigenstate with eigenvalue lowered by 1. As before we can
show that » takes integral values from (0 to 2¢, so there must be o vacuum state
|0} satisiying

aliy =0, (9.29)

From this state we can construct all of the eigenstates by successive operation by
creation operators,

| e

) = —=(a") " 10) (9.30)
st

The number operator counts the number of excitations above the ground state, The

set of eigenstates [n} acts as a basis; any state is an appropnate linear combination

of these states. The creation and annihilation operators act on them according to

aln) = nin — 1)
allny = +/n+ ln+ 1), (9.31)

and the energy of each state is of course given by (9.18). The basis states are taken
to be time-independent, so a physical system obeying Schrisdinger's equation will
be described by a state

[Wr(r)) = Er"e-”f=‘}n}. (9.32)
n

where again the ¢, 's are constant coefficients.

For purposes of smoothing the transition o field theory, it is useful (o trans-
tate this Schridinger-picture description into the Heisenberg picture, in which the
states are fixed and the operators evolve with time. Given Schrodinger’s equation
(9.16), anv state can be written formally as some fixed initial state acted on by a
unitary time-evolution eperator

[Wede)) = L) (0}, (9.33)
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where

Ulr) = Pe~t T Hude, (9.34)
(by unitary we mean UT™U = 1.) The symbol P stands for path-ordering, as
discussed in Appendix L IF the Hamiltonian is time-independent, of course. we
simply have U(t) = ¢ "', The Schridinger-picture expression for the matrix
element of a time-independent operator A between time-dependent states |y (r))
and [r2(r}} can then be written as a Heisenberg-picture expression in terms of a
time-dependent operator Al and time-independent states as

(e A (1)) = (YO} U 7 () AL (1) [y (O))

= (YaiAl)n ), (9.35)
where clearly the Heisenberg-picture operater is given by
A(n) = U (AU, (9.36)

Such an operator satisfies the Heisenberg eguation of motion,
{1A(r
f—’a-:—j =([H, Al1)], (9.37)

which takes the place of Schridinger’s equation in this picture. For the harmaonic
oscillator, we would find

di . da’ "
-rfi = —fad, % = fang . (438
i
with solutions
alt) = e a0, ainy’ = e"ay’. (9.39)

From this we immediately find
i) = atey a(r) = a(0) a0y, (9.40)

which reflects the fact that the number operator is conserved.

It is common to say that in the Heisenberg picture the states are time-
independent; this is somewhat confusing; 1f nevertheless true. It might be better
tor say that the states exiend throughow time, rather than only being delined at a
fixed time. To make this more clear, consider a simple harmonic oscillator subject
to an external influence, for example by simply adding a forcing term 1o the
Hamiltonian,

H=3p* + fo’x* + F1), (9.41)
where the function Fir) vanishes outside an interval,
0 =1
Fiy=¢ F(t) n=t=sn (9.42)

[ =1,
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We can think of someone coming along and shaking our oscillator for a short
while, and then leaving it alone after that. In the Schrodinger picture, we would
say that an oscitlator that started in its ground state would be excited by the ex-
ternal force, and the final state would not be the ground state. In the Heisenberg
picture, however, we take the state to be a solution to the equation of motion for
all times, and say that the number operator went from being zero 1o some other
value.

For the oscillator subject to a transient external foree, there are clearly a set
of states that look like ¢nergy eigenstates at early times, although they don’t look
that way in the future; we might call such states the “in states™ [#,), with the
property that

it < )i = nlrg). (9.43)

There is also a separate set of states that look like energy eigenstates at late limes,
correspondingly called “out states™ |ngy ), and obeying

Al = 12)ou) = ninow). (9.44)

Both sets of stawes exist at all times, but they look like energy eigenstates only in
the appropriate asvmptotic regime, Either set forms a hasis for the entire Hilbert
space, so in particular we could decompose one set in terms of the other. For
example, by muliiplying by a complete set of in stales, we can write

|”-.n|.|::| = z My i”nuli’“”ln]- (9.45)

il

The complex numbers (s, Ry are matrix elements, which could, in principle,
be calculated from the Hamiltonian (9.4 1): together they comprise the S-matrix,
An observer equipped with a way 1o detect excitations of the oscillator would
find that the number of excitations was changed by the applied force, and the
S-matrix encodes the imformation necessary o characterize these changes be-
tween the asymptotic past and future. All of this discussion, needless 1o say, car-
ries over essentially without modification to field theory. For particle physics, the
role of the external force is played by the interactions between different particles,
whereas for our purposes it will be played by the curvature of spacetime,

QUANTUM FIELD THEORY IN FLAT SPACETIME

As we have already mentioned, quantum field theory is just a particular example
of a quantum-mechanical system, in which we are quantizing a field (a function,
or more generally some tensor field, defined on spacetime) rather than a single os-
cillator. We begin with the simplest possible example, of a free scalar field in fat
spacetime; only a couple of generalizations are necessary 1o make the transition
from a single oscillator to this field theory. Extending the theory to curved space-
time is straightforward as usual, involving writing the theory in a covariant form
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and declaring 1t to be true. Once we lose the symmetries of Minkowski space,
however, some of the ideas we think of as central in a quantum field theory will
no longer seem so crucial; in particular, the notions of “vacuum”™ and “particles”
will lose their privileged positions, (Expositions of quantum mechanics will occa-
sionally make the point that waves and particles are complementary notiens with
different domains of validity, but don’t be misled; in quantum field theory it is
the fields that are truly fundamental, while the particles are approximate notions
useful in certain restricted circumstances.) In this section we study QFT in flat
spacetime, before generalizing to curved spacetime in the next section,

We start with the classical theory, in this case a real scalar field ¢ (™) in flat
spacetime, just as we considered in Chapter 1, this time generalized o n dimen-
sions. The action is the spacetime integral of the Luagrange density, S = [ d"x LC;
we will consider the Klein—Gordon Lagrangian

L= —in" i dup — tm*e?. (9.46)

It 15 not necessary to include the volume-element factor /|g|, since we are using
inertial coordinates in Minkowski space, with metric

ds? = —dt* + (dx)°. (9.47)
The equation of motion is the Klein-Gordon equation,
T —mip = 0. (9.48)

Translation inte a Hamiltonian description for the ficld theory is straightforward,
The conjugate momentum for a field 15 simply the denivative of the Lagrange
density with respect to the time derivative of that field,
oL
= (9.49)
)
For the Klein—Gordon Lagrangian (9.46), this is
T =g. (9.50)

Of course, referring to the time derivative assumes that we have chosen a partic-
ular inertial [rame: consequently, the Hamiltonian procedure necessarily violates
manifest Lorentz invariance. If we are careful, however, observable quantities in
the resulting theory will still be Lorentz-invariant. The Hamiltonian itsell can be
expressed as an integral over space of a Hamiltonian density,

H = fd”_]x H. (9511

which is related 1o the Lagrangian by a Legendre transformation,

xp — L, )
== -%Trj - _%f'?l;b]‘! -+ %mzqﬁl. (9.52)

Hig.m)
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where (Vo) = (i )@@ ). The correspondence between this field theory and
the harmonic oscillator should be clear: the field value ¢ (x) plays the role of
the coordinate v, with momentum field (v} instead of a single momentum p.
Instead of the state being specilied by two numbers (x and p) at some fixed time,
we would have to give field values [¢(x') and 7 (x")] all over space at some fixed
time as initial data, and there is an additional gradient werm that was missing in
the oscillator case; but otherwise the formalism is very similar.

We should emphasize that ¢ (x") is nor a wave function, it is a dynamical
variable, generalizing the single degree of freedom x in the case of the harmonic
ascillater. In a Schridinger-picture quantization of the field theory, we would de-
tine a complex wave functional ¥[é (c¥ )], which would represent the probability
amplitude for finding the feld in each configuration. Instead. however, we will
use the Heisenberg picture, so that our primary concern will be to promote ¢ to a
quantum operator,

First, we should complete the classical analysis by actually solving this theory.
It is not hard 1o write down solutions to the Klein-Gordon equation, One good
example is a plane wave,

Pty = {P[]Eik“x“ = e ks (453
where the wave vector has components
E* = (e, k), (9.54)
and the frequency must satisty the dispersion relation
wt =k +m?*. (9.55)

There 1s a clear similarity between such a selution and that for the simple har-
monic oscillator, given by (9.9). But there is also an important difference: For
the oscillator, there is only one independent solution. Because the oscillator has
a unique frequency, when we add two solutions with specified amplitude xp and
phase ay, they combine 1o give a third solution with the same frequency but dif-
ferent amplitude and phase. This is no lenger true in field theory. Given (9.55), the
frequency is determined by the spatial wave vector Kk, at least up to sign, There-
fore, instead of a single kind of solution, we have a set parameterized by k and
the sign of w.

However, we can stll write down the most general solution by constracting a
complete, orthonormal set of modes in erms of which any solution may be ex-
pressed. To make sense of “orthonormal,” we need to define an inner product on
the space of solutions w the Klein—-Gordon equatien. Although the modes them-
selves are functions of spacetime, the appropriate inner product can be expressed
as an integral over a constant-time hypersurface X,

(1. ¢2) = —r‘f (13,63 — ) d" . (9.56)
£
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As we would hope, the inner produet is actually independent ol the hypersurface
£, over which the integral is taken, as you can easily check by using Stokes's
theorem and the Klein—-Gordon equation. Applying this inner product to two plane
waves of different wave veclors gives

" :
ik Xy - Erki.:-_-]

(&
== :e- ru.l|.'J.-JH|-!:HFqur-r'k_l-x — pluat J'k;-xi]Ig-J't.-r|r4.—r'k1 x:] " i.’.’
Z
= (w3 + o M—Iinu—rﬁ?ﬂ f e?”h: ~kz)x a7y
e,
= (wy + wyje M=ot pyn=Tg=Uae Koy, (9.57)
where we have used
ik gn=1. _ ragmyi—1eln-1) )
fr d" 'y =02r)Y '8 (k). {9.58)

The inner product thus vanishes unless the spaiial wave vectors k, and hence the
frequencies e, are equal for both modes. An orthonormal set of mode solutions 1s
thus given by

pikat
()= —————, 9.59
M) = T 1:27)
with &* pheying (9.53), so that
(fie,. fis) = 8" Viks — Ka). (9.60)

Given the dispersion relation (9.55), k only determines the (reguency up to an
overall sign. Our strategy will be to insist that @ always be a positive number, and
complete the set of modes by including the complex conjugates fi" (x*). (Com-
plex conjugation changes the sign of the K term in the exponent as well as the e
term, but the components of k are defined from — o0 o o already.) The fi, modes
are said 10 be positive-frequency, meaning they satisfy

i fx = —iwfy, = () (9.61)
while the f’ modes are negative-frequency, satisfying
thfy = iwfy, w = (), {9.62)

(Be careful; these modes are called negative-frequency cven though e > (), be-
cause the time derivative pulls down a factor ++iw rather than —iw.) The complex
conjugate modes are orthogonal to the onginal modes.,

(fiys i) =0, (9.63)
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and orthonormal with each other but with a negative norm,
fi s fin) = ="k — ko). (9.64)

Together, the modes fx and f,7 form a complete set, in terms of which we can
expand any solution to the Klein-Gordon equation.

To canonically quantize this theory, we promote cur classical variables (the
fields and their conjugate momenta) to operators acting on a Hilbert space, and
impose the canonical commuiation relations on equal-time hypersurfaces:

[z, ). (1. X"} =0
[wit, %), w(r, x)] =0

[oir, x), wir, x )] = 18" Dix = x'). (9.65)

In field theery we need (o state explicitly that the field and its momentum com-
mute with themselves throughout space; for a single oscillator this is implicit,
since there is only a single coordinate and momentum, each of which will nec-
essarily commute with itself. The delta function implies that operators at equal
times commute everywhere excepl al coincident spatial points; this feature arises
from the demands of causality (operators at spacelike separation cannot influence
each other).

Just as classical solutions 1o the Klein—Gordon equation can be expanded in
terms of the modes (9.39), so can the quantum operator field ¢ir, x). Denoting
the coefficients of the mode expansion of the field operator by nk and ay, we have

$(1,x) = fd""k [k filt, %) + éay fir (1. x)]. (9.66)

Plugging this expansion inte (9.65), we find that the operators :111 and g obey
commutation relations

lag, agl =0
|y, dy. ] =0
[k, a.] = 8" V(k —K). (9.67)

These eperators thus obey the commutation relations charactenstic of creation
and annihilation operators, Tamiliar from (9.23) tor the simple harmonic oscillator.
The ditference, of course, is that there are an infinite number of such operators,
indexed by k. We can see the relevance of dividing the modes into positive- and
negative-frequency; the positve-frequency modes are coefficients of annihilation
operators, while negative-frequency modes are coefficients ol creation operators,
The idea of positive- and negative-frequency modes will turn out (o generalize 1o
static spacetimes, although not to arbitrary spacetimes.

In the case of the harmoeme oscillator, we used the creation and annihilation
operators to define a basis for the Hilbert space in which the basis states were
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eigenstates of the number operator. The same procedure works for the frec scalar
field, although now we have to keep track of separate numbers of excitations for
each spatial wave vector K. There will be a single vacoum state |0), characterized
by the fact that it is annihilated by each ay,

agid) =0 for all k. (4.68)
A state with ng particles with identical momenta K is created by repeated action
by u;

P
i) = == (&) " 100 (9.69)

while a state with n; excitations of various momenta k; would be

N1, n2eeen ) = Jﬁﬁ ()" (a)" - (a,)" 0. @70

Acting on such a state, the creation and annihilation operators change the number
of excitations, as expected;

ST 5 TR IR ng) =fmpnying, oo =1 000m)
ﬁ;l”!n’PL cenain ) = Ty g, oo om + L), (971)
We can define a number operator for each wave vector,
fix = ay dx, (9.72)
which obeys
i e By e iy v G =0l 3, ., - T nil. (9.73)

The states that are eigenstates of the number operators form a basis for the entire
Hilbert space, known as the Fock basis; the space constructed from this basis is
often called “Fock space,” but of course it is just the original Hilbert space,

One thing we might want Lo investigaie is how our Fock basis behaves under
Lorentz transformations. We have clearly been taking advantage of the symme-
tries of Minkowski space, for example in using plane waves as a basis for so-
lutions to the Klein-Gordon equation, The crucial aspect of these modes 1s our
ability 1o distinguish between positive and negative frequencies. allowing for an
interpretation of their coefficients in the mode expansion of ¢ as annihilation and
creation operators. Now consider a boost by velocity v = dx/dt, leading to new
coordinates x* given by

=yt —yv.x, x = yx—pvt, (9.74)
where ¥ = 1/+/1 — v*, and the inverse transformation is given by

t=pt +yv. X, x=yx' +yvr. (9.75)
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The time derivative of our mode functions in the boosted [rame 1s

dy fy = %“ﬁ fx
= y{—iw) fx +pyv- ik} fx
= —iw [i (9.76)
where
w =yw—yvy-k (9.77)

is simply the frequency in the boosted frame. Clearly, then, a state describing a
collection of particles with certain momenta is boosted into a state deseribing the
same particles, but with boosted momenta. Thus, the wrtal number operator in the
two frames will coincide, and in particular the vacuum state will coincide. In this
sense, our eriginal choice of inertial frame was irrelevant. In the next section we
will see that our ability 1o find positive- and negative-frequency selutions can be
traced 1o the existence of a tmelike Killing vector &, in Minkowski spacetime,
while the invariance of the Fock space under changes of basis can be traced to the
fact that all such timelike Killing vectors are related by Lorentz transformations,
Theretore, even if the frequency of a mode depends on the choice of inertial frame,
the decomposition into positive and negative frequencies 1s invariant,
We would like to express the Hamiltonian

I . 1 ]
_ T T B 5 S < - I e Y
H._fa' X [zqaﬁ +2i'{'<,1':j +2m q;r] (9.78)

in terms of the creation and annihilation operators, just as we did for the harmonic

. . . a - + 3
oscillator. We can analyze this expression term-by-term, starting with the ¢ term
for simplicity:

|
;l‘-.r.‘rrJ d" Vet

& %m:fd“_l.x A"k d" (ak,rk +.:‘a;f|;) (:1;,.fk- +:‘;;.fk'.)

I I Ty T
-zm? f d"xd" ke d" % (amy fafie + asa fi fe

+ iy, fi Sy + dgdy KRS ) -
(9.79)
Zooming in on the first term in parentheses, and ignoring for the moment the
integral over k, we can plug in the explicit form of the mode functions (9.59) 1o
obtain

S (e ) & (h+k')x

fﬁf"_ b d" Y aviye fi fe = fd”_]x d" K agay

202wy e’
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g lart i
- jd"‘Lk'f';krik- 5k - 1)
24/t
—=2iwl

= Agfik =" (9.80)

where we have used (49.58) again. Evaluating the other terms in (9.79) similarly,
we find that the petential-energy contribution to the Hamiltonian therefore be-

comes
ifrn2 [d”_] v = --[-mzja"’_'k (—1—) [fhﬂ' o Hon
2 ) 2 E(r.? -

+ g+ il + g e . (9.81)

For the kinetic-energy and gradient-energy pieces, the derivatives pull down Fac-
tors of w and k respectively; we obtain

1 . R - 3 o _1; ot i oxt ab st
- f 1"~y 2 = 5 ] d" 'k (%) [—rzk:z_ke SO Gy + dwdy, — aku_hez“”‘]

2
(9.82})

-

and

[ | =

=] 2 | =1 kz - =2iet
d .I(V!ﬁi}‘:; "k = [c:ka_ke

& »

+ Gy + dndy + il ). (9.83)

Using @° = k® + m”. we can put it all together to write the Hamiltonian for the
scalar field theory as

H

I s w
= fﬂ'”_lk [H':uk - Ukﬂk] i

: I
= j d* {r’rk + ;5““"m,a:| @, (9.84)

where the last step invokes the commutation relation (9.67) and the number oper-
ator g = @ ak. By similar logic, we can construct an operator corresponding to
the spatial components of the total momentum, which works out to be

P =frf"“kﬁkk". (9.85)

As we might expect, energy eigenstates will be those with fixed numbers of
excitations, cach of which carries an energy w. The excitations in the Fock basis
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are interpreted as particles. This is how particles arise in a guantum field theory:
energy eigenstates are collections of particles with definite momenta. OF course,
our modes are plane waves that extend throughout space, not the localized tracks
in bubble chambers that come o mind when we think of partickes. What 1s worse,
in a curved spacetime the wave equation will not have plane-wave solutions of
definite frequency that we can interpret as particles. The solution to buth issues
is to think operationally, in terms of what would be observed by an experimental
apparatus. The best strategy is to define a sensible notion of a particle detector
that reduces o our intuitive picture in flar spacetime, and then define “particles™
as “what a particle detector detects,” For a properly defined particle detector, our
plane wave modes can be shown o “leave tracks™ in the way we would hope; in
an array of such detectors, if a plane wave sets off one detector, there is a high
probability that it will set off other detectors along a path from the first one in
a direction given by the wave vector. (We should point out that, if’ you visit an
actual particle accelerator at a place like Fermilab or CERN, the deteciors bear
little resemblance to those invented by theorists studying quantum field theory in
curved spacetime; deep down, however, there is a fundamental similanty.) For a
discussion of particle detectors see Birrell and Davies (1982).

You might worry about the factor 8™~ (0) in the Hamiltonian (9.84), and
well you should. It means that the Hamiltonian is infinite even when measured
in the vacuum state |0). This term is the field-theory analogue of the harmonic-
oscillator zero-point energy (9.20). In our discussion of the cosmological constant
in Chapter 4, we mentioned that quantum fluctuations induced a formally infi-
nite displacement of the classical vacuum energy: this infinite contribution to the
scalar-field Hamiltonian will, when gravity s included, show up as a divergent
cosmoelogical constant, The Fact that it is an integral over an infinite range of k
of the infinite quantity 4"~ (0) can be translated into the statement that the total
energy is an integral over an infinitely big space of an infinite energy density. But
the energy density contributed by high-frequency modes is the real problem, not
the infinite volume; it we regularized the caleulation by perferming il in a box of
volume L"~ !, we would find

| A e
;fd”"lk:'i'” D(0)ew — 5 (2—) Ew. (9.86)
& ¥ g k

which diverges even for finite L, since K (and thus ) can be arbitrarily large,
Putting a cutoff at some high momentum ks would recover (4. 104).

In the case of the simple harmonic oscillator, we pointed out that the zero-
point energy could have been avoided had we chosen a classical potential with
a negative minimum; the quantum-mechanical contribution does not necessarily
represent the wue answer, only the displacement of the energy from its classical
value, The same holds in ficld theory: we are free to define our original classi-
cal scalar field theory so that the quantum-mechanical vacuum energy vanishes.
However, we cannot simply subtract off a finite energy mode by mode. since our
freedom is only to add a single constant to the potential, and thus o the Hamil-
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tonian density (9.52). To obtain a finite Hamiltonian for the vacuum state, this
constant would have to be infinite. There is nothing wrong with subtracting off
an infinite constant; 1t 15 a venerable technique in quantum field theory, known as
“renormalization.” At times renormalization can seem scary or somehow illegit-
imate, but in truth it is perfectly sensibie; infinitics only arise in the relationship
between quantum theories and their classical counterparts, not in any observable
quantities. Since Nature presumably doesn’t know or care about our fondness for
classical mechanics, there should be nothing deeply disturbing about renormal-
zation,

OF course, once we renormalize to obtain a finite vacuum cnergy, this energy
could be anything we like: it is completely arbitrary. This continues to hold for
guantum field theory in curved spacetime; we might not be able 10 decompose
the field into modes of definite frequency, and it is therefore impossible to assign
a vacuum energy contribution 1o each mode, but a careful analysis allows one to
renormalize the vacuum energy to whatever number you like. Again, nothing pro-
found has happened; the vacuum energy was completely arbitrary in our classical
model in the st place, we simply chose it 1o be zero for convenience. The cosmo-
logical constant problem does not arise because quantum mechanics contributes
a huge amount of vacuum energy, since this contribution can be straightforwardly
renormalized away; the problem arises because there is no reason for the resulling
arbitrary number to be close to zero. As discussed before, from the point of view
of effective field theory the problem is somewhat sharper, since there is a logical
expeciation for the scale of the vacuum energy, numely the Planck scale at which
unknown guantum-gravity effects should be contributing. Throughout this chap-
ter, however, we will only be concerned with the propagation of guantum fields in
fixed spacetime backgrounds, not in using the guantum energy-momentum ensor
as-a source for Einstein’s equation; we can therefore choose to ignore the cosmo-
logical constant problem.

QUANTUM HIELD THEORY IN CURVED SPACETIME

In Chapter 4 we discussed how ecasy it is 1o generalize physical theories from flat
to curved spacetime—we simply express the theories in a coordinate-invariant
form, and assert that they remain true when spacetime 15 curved. This procedure
remains valid for guanium field theory, although we will need 1o give up on some
of the concepts that secemed mdispensable in flat spacetime,

We start with the Lagrange density of a scalar field in curved spacetime,

L= V=g (- 18" VugVip — Ime? — £RG?). (987)

Aside from the predictable appearance of the metric gy, and its determinant, we
have also included a direct coupling to the curvature scalar R, parameterized by a
constant £. Since £ is dimensionless, there is no reason o expect that it is small;
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indeed, it should paturally be of order unity, In the literature there are two fa-
vorite choices for the value of £ minimal coupling simply turns off the direct
interaction with &,

£ =1, (9,84

while conformal coupling sets

g2 (9.89)
A - 1)’ '

which is & = % in four dimensions, Using the formulas in Appendix G, 11 is easy
10 check that when £ takes on this value and m = O, the scalar field theory is
invariant under conformal transformations g, — w?(x)e e 0 fact, there i no
good reason to choose either minimal or conformal coupling in the real world: no
symmetry is enhanced by minimal coupling, and conformal invariance is certainly
not a symmetry of most physical theoeries. (Since conformal transformations are
local changes of scale, theories characterized by dimensionful parameters such as
masses will generally not be conformally invariant.) Even if a classical theory is
conformally invariant, quantization can break this symmetry, which happens for
example in the theory of gquantum chromodynamics (QCD) coupled 10 massless
quarks. Generally, in four dimensions it is difficult to find exactly conformally
invariant interacting theories, although some medels with high degrees of super-
symmeiry are known to be conformally invariant.

We may proceed 1o quantize the theory as before. The conjugate momentum is

iL
A (9.90)
d(Vop)
which for the Lagrangian (9.87) is
= —gVod. (9.91)
We can impose canonical commutation relations
[¢ee, ), p(t.x)] =0
[l %), mit.x)] =0
[pte, %), 7xlt.x)] = ﬁa“"“:x—x':n, (9.92)
The equation of motion for the scalar field is
g —mip — ERG = 0. (9.93)

For & spacelike hypersurface X with induced metric pi; and unit normal vector
n*. the inner product on solutions to this equation is
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(b, ) = —i f () Vb3 — 3V, ) n" 7 d™ x, {9.94)
z

which 1s independent of the choice of I,

So far, so good. To continue the steps we took in flat space, we would now
introduce a set of positive- and negative-frequency modes forming a complete
basis for solutions 1o (9.93), expand the ficld operator ¢ in terms of these modes,
and interpret the operator coefficients as ereation and annihilation operators. It is
at this point where our procedure breaks down. Since there will generically not
be any timelike Killing vector, we will not in general be able to find solutions to
the wave equation thal separate into time-dependent and space-dependent factors,
and correspondingly cannot ¢lassify modes as positive- or negative-frequency, We
can find a set of basis modes, but the problem is that there will generally be many
such sets, with no way to prefer one over any others. and the notion of a vacuum
or number operator will depend sensitively on which set we choose.

Let's see what we can do. We will always be able 1o find a set of solutions
filx#) o (9.93) that are orthonormal,

(fi Fiy="14y, (9.95)

and corresponding conjugate modes with negative norm,
(7 S} = —8ij. (9.96)
The index § may be continuous or discrete; for the moment we will adopt notation

appropriate to the discrete case. These modes can be chosen to be a complete set,
so that we may expand our ficld as

o=3 (afi+af). (9.97)

& o g - o . .
I'he coelhcients a; and @ have commutation relations

[@.a;] =0
la;.a;1=0
ldi. ;] = ;. (9.98)

There will be a vacuum state (1) that is annihilated by all the annihilation oper-
ators,

a;|0y) =0 for all i. (%.99)

From this vacuum state we can define an entire Fock basis for the Hilbert space.
As before, a state with n; excitations is created by repeated action by a, .
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I at ﬂl
i) = — (&) 107, (9.100)
n;! !

and likewise for states with different kinds of excitations. We can even define a
number operator Tor each mode,

fifio= @, a;. (9.101)

The subseript | on the vacuum state and the number operator reminds us that they
are defined with respect to the set of modes fi.

This apparatus seems quite similar 1o whal we had in flat space; why can’t we
declare the excitations created by @ 1o be particles and be done with it? We could,
but we must face the fact that there are other choices we ¢ould have made; the
basis modes f;(x") are highly nonunique. Consider an alternative set of modes
gi(xy with all of the properties that our onginal modes possessed, including
forming (along with conjugate modes g ) a complete basis with respect 1o which
we can expand our hield operator,

Fi= Z(Efg,- +f3f,;:). (9.102)
:

The annihilation and creation operators E:r, and h‘ have commutation relations
[bi,bj] =0
b/, b1 =0
[bi. B3] = 8ij. (9.103)

and there will be a vacuum state |0, that 13 annihilated by all the annihilation
operators,

bilog) =0 foralli. (9.104)

We can construct a Fock busis by repeated application of creation operators on
this vacuum, and define a number operator

figi = b by (9.105)
What we have lost in the transition from flat to curved spacetime is any reason (o
prefer one set of modes over any other. In flat spacetime, we were able 1o pick out
a natural set of moedes by demanding that they be positive-frequency with respect
1o the time coordinate, as defined by (9.61), The time coordinate is not unigue,
since we are free to perform Lorentz transtormations; but we saw that the vacuum
state and total number operators are invariant under such transformations. Thus,
every inertial observer will agree on what is the vacuum state, and how many
particles are around.
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In the more general context we are considering now, if one observer defines
particles with respect o a set of medes f; and ancther observer uses a set of
modes g, they will typically disagree on how many particles are observed (or
even if particles are observed at all). To see this, it is convenient to expand each
set of modes in terms of the other,

8= Z(H‘Uf; 1 ﬁlj.lrj‘)

4
=Y (a‘}jgj - ,e,,-,g;) . (4.106)

J
The transformation from one set of basis medes into another 15 known as a Bogol-
ubov transformation, and the matrices o5 and f;; implementing the transforma-
tion are Bogolubov coeflicients. Using the orthonormality of the mode functions,

they can be expressed as

O f
JHI;
They satisfy their own normalization conditions,

Z (”:‘W}l - ﬁmﬁ;k) = dij

I

> (B — Pirerji) = 0. (9.108)

r

(& f,,'}
~(gi. f7). (9.107)

As well as deseribing a transformatien between modes, the Bogolubov coeffi-
clents can be used o ransform between the operators,

;= z (z’.‘r,.;f_?‘,. I3 ﬁ:lfgj)
4
b= (e — Ba)). (9.109)

I

Now imagine that the system is in the f-vacuum [0 ¢}, in which no f-particles
would be observed; we would like to know how many particles are observed by
an observer using the g-modes. We therefore calculate the expectation value of
the g number operator in the f-vacuum:

(07 1igil07) = (0416, 510 1)
= (U'_,r Z (aua ﬁ,;a‘,) (a‘]d* - _Br'k&,:) [l_;-)

ik
Z f-'jU —B) (Oyla a}. 3[}1"!
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=3 Bibil0s] (54;5; + M) 07
1k
= BuBidinl0s10;)
ik

=Y Biibij. (9.110)
J

The number of g-particles in the f-vacuum can thus be expressed in terms of the
Bogolubov coefficients as

(Ofligl0p) = 181 (9.111)

4

There is no reason for this to vanish: what looks like an empty vacuum from one
perspective will be bubbling with particles according 1o another, If any of the f;;
are nonvanishing, the vacuum states will not coincide. We can understand why this
is by looking at (9.109), where we see that £, describes the admixture of creation
operators from one basis into the annihilation operators in the other basis.

This talk about modes and number operators may seem unnecessanly abstract;
certainly, if an actual particle detector is traveling along some trajectory in a
possibly-curved spacetime, 1t will either detect particles or not, without Know-
ing what set of basis modes we are using for field theory. How do we know what
definition of “particles” is actually being used by such a detector? The answer
is that a detector measures the proper ime 1 along its trajectory, and will define
puasitive- and negative-frequency with respect 1o that proper time, Thus, if a set of
maodes f; can be found that obey

D
L IIJ =_£a1ﬁl lu.ll-j-]

dr’

we can use these modes to caleulate how many particles the detector will see. OF
course, it will generally not be possible (o find such modes all over the space-
time. The one time that it might be possible is in a static spacetime, when we
have a hypersurface-orthogonal timelike Killing vector K. In that case we can
choose coordinates in which the metric components are independent of the time
coordinate r, and there are no lime-space ¢ross lerms:

E}l::j@#l- =1, goi = 0. (9.113)

(Indices i, j are now spatial components, not mede labels.) For such a metric, the
d’Alembertian acting on some mode function f(r, x} works out o be

Cfs [gmi.’r[';-i- L g™l (380000 + &7 83 — J.;""']‘fIi!k] 1 (9.114)
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The equation of motion (9.93) can thus be written in the Torm

o | ; )
"'[;:]]f G (g_m‘.l) [gl,l'nl a_,' .{_ 'lggmj,‘”mré"tﬂl.l"i; = lgnj ]“f:fﬁl_ - ‘,m? 4 EH]} I,L
(9.115)

The operator on the left is a pure time derivative, while the operator on the right
involves only spatial derivatives and functions of space alone. We can therefore
find separable solutions

Fulti %) =e™F £ 08, (9.116)
which can be described as positive-frequency,
it feult. X) = —twf,(f, X}, i = (). (9.117)
This relation can be recast in a coordinate-invariant form as
Ly fu = K¥*8 fo = —iofs, w = 0, (9. 118)

where Ly f,, denotes the Lie derivative of f,, along K. There will also be
negative-frequency conjugate modes,

Cx f2=KPa, [ =iof], w>0 (9.119)

Together, the modes ( f,,, £ will form a basis for solutions 1o the wave equa-
tion in a static background. The existence of such modes won't help us unless
they are relevant for our detector; if the detector's trajectory Tollows along or-
bits of the Killing field (the four-velocity UF = dx¥ /dt is proportional to K7,
the proper time will be proportional to the Killing time 1, and modes that are
positive-frequency with respect to this Killing vector will serve as a natural basis
for descnibing Fock space. We will see this phenomenon at work in our discussion
of the Unruh effect in the next section,

In the last section we mentioned the need to renormalize the vacuum energy
in quantum field theory. This requirement still exists in curved spacetime, but
an appropriate renormalization procedure s harder w construct, since there is
no preferred mode basis, Nevertheless, algebraic methods have been developed
1o define a renormalized energy-momentum tensor rigorously, at least in cer-
tain cases; we won't delve into this subject in detail, but should at least present
some of the underlying philosophy. The basic idea is that, even in the presence
of curvature, spacetime should look Minkowskian on small enough scales. Be-
cause the vacuum-energy divergence we found in fat spacetume was due to short-
wavelength modes, we should be able to match the behavior of fields in curved
spacetime on very small scales to those in flat spacetime, and subtract off any
divergences that appear. In particular, we consider the two-point function of a
guantum field ¢ in some siate 1),
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Glay, xa) = ([ Ly dep Ll ), (9.120)

where v and xvs are two spacetime points. The two-point function in the Min-
kowski vacuum becomes singular as x) and xz are brought close o each other.
We would like 1o characterize this singularity, and insist that it hold for any reg-
ular state in curved spacetime. By “brought close to cach other” we mean that
& lxp. a2, the squared distance along the shortest geodesic connecting the two
points, goes W zero, In the limit as 1 and x2 are very close, the squared geodesic
distance is simply

oi{x1.x2) = gm.{.rft - .rf}t.r;' - Xa ) x| — X3 (9121

Of course, in a Lorentzian manifold, the geodesic distance will vanish when points
are null separated, not only when they are comncident. We theretore include a small
imaginary part and take the limit as it goes o zero, by defining

G (x1, x2) = o(xy, x3) + 2ie(ty = 12) + €. (9.122)

Here, ¢ is the timelike coordinate, and the limit as € — 07 is assumed. (The mani-
fest coordinate-dependence of this formula will be irrglevant in this limit) Then it
turns out that there is a unigue singularity structure for the natural vacuum in Min-
kowski spacetime, such that the two-point function (in four dimensions) contains
a leading singularity of the form 1/(4x %a, ) and a subleading one proportional to
In v, with all other terms being regular. We therefore require that any physically
reasonable quantum state in curved spacetime abey

U{xy,x2)
Gifx i) = — B
153y %2) b

+ Vixp, x2) lno. + Wixg, 1), {9.123)

4 20’.

where the functions U (xy, x2), V(x, x2), and Wi{x,, xz) are all regular at x; =
aycand Eix, x) = 1A state with this property is said to be a Hadamard state. It
can be shown that the renormalized energy-momentum tensor is well-defined and
nonsingular in all Hadamard states, and furthermore that it will be singular in any
non-Hadamard state, 1 the Hadamard condition is obeyed on some partial Cauchy
surface, it will also be obeyed everywhere in the domain of dependence; in other
words, the energy-momentum tensor may become singular on a horizon, but not
within the Cauchy development of some well-posed initial daa. States of this
form, therefore, seem appropriate for consideration in QFT on curved spacetime.
For details sce Wald ( 19494,

We see that QFT in curved spacetime shares most of the basic features of QFT
in flat spacetime; the crucial difference mvelves what we cannal do, namely de-
cide on a natural set of basis modes that all inertial observers would identify as
particles. At the end of Section 9.2 we briefly discussed an oscillator subject o
a transient force, and how (o define an S-matrix relating number eigenstates at
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early times to number cigenstates at late times. The same set of weas translates
directly to guantum field theory. If we have a situation in which spacetime is static
in the asymptotic past and future, but with some disturbance in between, we can
define in- and out-stales that are energy eigenstates at early and late times, and
a set of Bogolubov coelficients describing how the in-vacuum (for example) will
be described as a multiparticle configuration in terms of the out-states, This phe-
nomenon goes by the name of particle production by gravitational fields; relevan
physical examples include the early universe and black holes.”

THE UNRUH EFFECT

We must admit that. having put so much effort into understanding the basics of
quantum field theory in curved spacetime, we won't actually do any detailed cal-
culations in a curved background. Instead, we will investigate a phenomenon that
relies on the ideas we have introduced, but is manifested even in lat spacetime;
the Unruh effect, which states that an accelerating observer in the traditional Min-
kowski vacuum state will ohserve a thermal spectrum of particles, Historically.
the Unruh effect was discovered in an attempt to understand the physics under-
lying the Hawking effect (thermal radiation in the presence of a black hole event
horizon). Our strategy will be to carefully derive the Unruh effect, and in the next
section argue under reasonable assumptions that this implies the Hawking effect.
which is more difficult 1o derive directly just because it's harder o solve wave
equations in curved spacetime than in flal spacetime,

The basic idea of the Unrah effect 15 simple: 10 1s a manifestation of the idea
that observers with different notions of positive- and negative-frequency modes
will disagree on the particle content of a given state. For a uniformly accelerated
observer in Minkowski space, the trajectory will move along orbits of a time-
like Killing vector, but not that of the usual time-translation symmetry, We can
therefore expand the field in modes appropriate to the accelerated observer, and
caleulate the number operator in the ordinary Minkowski vacuum, where we will
find a thermal spectrum of particles. Different sets of explanatory words can be
attached to this result; the basic lesson to learn is that what we think of as an inernt
vacuum actually has the character of a thermal state,

In the interest of discarding all possible complications to get at the underly-
ing phenomenon, we consider a quantum field theory that is as simple as it can
be without becoming completely trivial: a massless (m = () scalar field n two
spacetime dimensions (1 = 2). In two dimensions, conformal coupling and mini-
mal coupling coincide, so we do not include any direct interaction with the curva-
ture scalar. (We're in flat spacetime, so such a coupling wouldn’t have any effect
anyway.) The relevant wave equation is thus

¢ =0, (9.124)

Interestingly, the first discussion of particle prodection in curved spacetime was given by Schrodinger
himself; see E. Schaodinger (19391, Physica (Utrecht) 6, 94,
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Before diving into the quantization of this field theory, let’s think aboutl two-
dimensional Minkowski space as seen by a uniformily accelerating observer. We
know that the metric can be writien in inertial coordinates as

ds? = —dr? +dx?, (9.125)

Consider an observer moving at a uniform acceleration of magnitude @ in the
a-direction. We claim that the resulting trajectory x* (1) will be given by
sinh{ar)

Flx)y=

x(t) = —coshiar). (9.126)

R | 8=

Let’s verify that this path corresponds to constant acceleration, The acceleration
two-vector is given in the globally inertial coordinate system by
Dxt @ik

de?  dr?’

il i

(9.127)

where the covartant derivative along the path is egual to the ordinary derivative
because the Christoffel symbols vanish in these coordinates. The components of
a' are thus

@' = @ sinhier)

a' = e coshlat), (9.128)
and the magnitude is
P— /
Japat = —a? sinh? (1) + a? cosh*(at) = @. (9.129)

The path therefore corresponds 1o a constant acceleration of magnitude o, as de-
sired. The trajectory of our accelerated observer obeys the relation

ity =171) + 1/a”, (9.130)

and thus describes an hyperboloid asymptoting o null paths ¥ = —r in the past
and x = 1 in the future. The accelerated observer travels from past null infinity to
future null infinity, rather than timelike infinity as would be reached by geodesic
ubservers.

We can choose new coordinates (1, £) on two-dimensional Minkowski space
that are adapted to uniformly accelerated motion, Let

b | g
{= :Eﬂ& sinhlan), X = TE“; coshian) (x > |t]). (9.131)
i (¥
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&

FIGURE 9.1  Minkowski spacetime in Rindler coordinates. Region I is the region acces-
sible 10 an observer undergoing constant gcceleration in the +o-direction. The coordinates
(;.£) can be used in region 1, or separately in region IV, where they point in the opposite
sense. The vector ficld 4, corresponds to the generator of Lorénte boost symmetry, The
honzons H * are Killing horizons for this vector field, and also represent boundaries of the
past and future as witnessed by the Rindler observer.

The new coordinates have ranges
—oc-= 1, b < 4o (9,132}

and cover the wedge v = [t], labeled as region | in Figure 9.1, In these coordi-
nates, the constant-aceeleration path (9,126 1s given by

o
Mmr)=—1
a

1 i
Gesnties = :'.?l
E[r]—a ln( ) {9,133

so that the proper time is proportional to i and the spatial coordinate £ is constant,
In particular, an observer with @ = a moves along the path

i 5 E=0. (9.134)
The metric in these coordinates takes the form
ds? = 2% (—dn? + dE?), (9.135)

Region I, with this metric, 15 known as Rindler space, even though it 1s obvi-
ously just a part of Minkowski space, A Rindler observer is one moving along



9.5 The Unruh Effect 405

a constant-acceleration path, as in (9.133). The causal structure of Rindler space
resembles the region r = 2G'M of the maximally extended Schwarzschild solu-
tion of Figure 5.12. In particular. the null line x = r, labeled H™ in Figure 9.1, is
a future Cauchy horizon for any n = constant spacelike hypersurface in region [;
similarly, #7 is a past Cauchy horizon. These horizons are reminiscent of the
event horizons in the Kruskal diagram, with static observers (¢ = constant) in
Schwarzschild being related 1o constant-acceleration paths in Rindler space.

The metric components in (9.135) are independent of n, so we immediately
know that i, is a Killing vector. But of course this is just Minkowski spacetime,
so we think we know what all of the Killing vectors are. Indeed, if we express o,
in the (1, x} coordinates, we find

ot ilx
ty = — o + — i
i i)

&% [coshian )i, + sinhian)i, |

= alxd + tiy). (9.136)

This is nothing more or less than the Killing field associated with a boost in the
x-direction, It is clear from this expression that this Killing field naturally extends
throughout the spacetime; in regions IT and 11 it is spacelike, while in region IV it
is timelike but past-directed, The horizons we have identified are actually Killing
horizons for i, The redshift factor, defined in (6,121 as the magnitude of the norm
of the Killing vecior, is

Vo= g2 (9. 137y

The surface gravity » = /V, VV# V of this Killing horizon is thus
K =d (2.138)

There is no real gravitational force, since we're in flat space; but this surface
gravity characterizes the acceleration of Rindler observers.

We can also define coordinates (5. £) in region IV by flipping the signs in
(9,131,

t = —{—ie“f sinh{an). X = —}}e"“‘ coshian) (v < t]).  (9.139)
The sign guarantees that &, and d; point in opposite directions in region 1V,
Strictly speaking, we cannot use (5, £} simultancously in regions [ and IV, since
the ranges of these coordinates are the same in each region, but we will be okay
so long as we explicitly indicate 10 which region we are referring. The reason
why it's better to use the same set of coordinate labels twice, rather than simply
introducing new coordinates, is that the metric (9.135) will apply to both region |
and region IV,
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Along the surface £ = 0, d; 15 a hypersurface-orthogonal timelike Killing vec-
tor, except for the single point x = 0 where it vanishes. This vector can therefore
be used 1o define a set of positive- and negative-frequency modes, on which we
can build a Fock basis for the scalar-field Hilbert space. The massless Klein-
Gordon equation i Rindler coordinates takes the form

=" (=] + 8 = 0. (9.140)

A normalized plane wave g = (draw) L 2p—tam+ikE with @ = |k|, solves this
equation and apparently has positive frequency, in the sense that 9,8 = —fwgg.
But we need our modes to be positive-frequency with respect to a future-directed
Killing vector, and in region [V that role is played by ;) = —4, rather than &,.
To deal with this annoyance, we introduce two sets of modes. one with support in
region 1 and the other in region 1V:

(M _ ! _p—lensikE
8 T Jamew
{0 v
0 l
(2 1 : J
gy = e teur ik E A% (9,141}

e

We take w = |k| in each case; in two dimensions, the spatial wave vector is just
the single number k. Each set of modes is positive-frequency with respect to the
appropriate future-directed timelike Killing vector,

q (R . i1
hBy = THEE
r'.’r._,j.(ig,i.lI = rimgiz', w = 0, {(9.142)

These two sets, along with their conjugates, lorm a complete set of basis modes
tor any solutions to the wave equation throughout the spacetime. (The single point
x =1 = 0is aset of measure zero, so we shouldn™t have 1o worry about it.) Both
sets are nonvanishing in regions 11 and [ of the Rindler diagram: this is obscured
by writing them in terms of the coordinates » and £, but these functions can be
analytically extended ino the future and past regions. Denoting the associated
annihilation operators as !31!‘3:', we ¢an write

g j dk (b;"g" + BtV gl L 31D +£~;3"‘g;3’“). (9.143)

This expansion is an alternative to our expression (9.66) in terms of the original
Minkowski modes, which in two dimensions takes the form

A fu’k (afi+af3). (9.144)
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It is straightforward to check that the modes (9.141) are properly normalized
with respect to the inner product (9.94), In the metric (9.135), the future-directed
unit normal to the surface 1 = O 18 normalized to

l = gunt'n’ = —e28(n0y?, (9.143)
or
0 =g {(9.146)
Meanwhile, the spatial metric determinant satisfies
T =€ (9.147)

We therefore have n” /¥ = 1, and the calculation of the inner product of the
Rindler modes follows precisely that of ordinary Minkowski modes. We end up
with

{x;i:m-.&';:"i = dk) —k3)

2) {2
(8, &5,) = 8k — k2)
i 7
(8, + 8, ) =0, (9.148)
and similarly for the conjugate modes.

There are thus two sets of modes, Minkowski and Rindler, with which we can
expand solutions to the Klein-Gordon equation in a Aat two-dimensional space-
time. Although the Hilbert space for the theory is the same in either representa-
tion, is interpretation as a Fock space will be different; in particular, the vacuum
states will be different. The Minkowski vacuum [th), satisfying

di g = 0, (9.149)

will be described as a multi-particle state in the Rindler representation; likewise,
the Rindler vacuum |Ug . satisfving

b og) = b7 [0g) = 0. (9.150)

will be described as a multi-particle state in the Minkowski representation. At
a practical level, the difference arises because an individual Rindler mode can
never be written as a sum of positive-frequency Minkowski modes; at 1 = 0 the
Rindler modes only have support on the halt-line, and such a function cannot be
expanded in purely positive-frequency plane waves, Thus, the Rindler annihila-
tion operators used W define |Ug) are necessarily superpositions of Minkowski
creation and annihilation operators, so the two vacua cannot coincide.

A Rindler observer will be static with respect o orbits of the boost Killing
vector d,. Such an observer in region | will theretore describe particles in terms
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of the Rindler modes ,1:;' ', and in particular will observe a state in the Rindler
vacuum Lo be devoid of particles. a state 5, [Op) 1o contain a single particle of
frequency e = |k|, and so on. Conversely, a Rindler observer traveling through
the Minkowski vacuum state will detect a background of particles, even though
an inertial observer would describe the state as being completely empty. What
kind of particles would the Rindler observer deieet? We know how 1o answer
this question: Calculate the Bogolubov coefficients relating the Minkowski and
Rindler modes, and use them to determine the expectation value of the Rindler
number operator in the Minkewski vacuum. This 1s strarghtforward but tedious,
so we will take a shorteut due to Unruh, We will find a set of modes that share the
same vacuum state as the Minkowski modes (although the description of excited
states may be different), but for which the overlap with the Rindler modes is more
direet, The way te do this is 1o start with the Rindler modes, analytically extend
them to the entire spacetime, and express this extension in terms of the original
Rindler modes,

To see how this works, notice from (9.131) and (9.139) that we have the fol-
lowing relationships between the Minkowski coordinates (7, v ) and Rindler coor-
dinates (x7, §) in regions | and 1V:

e=ol=E) I{H—I +x) 1

at — x) v
am+t) _ | alt +x) [ :
; l.ﬂ‘{—f —x) IV \Hsod)

. \ | .
We can therefore express the spacetime dependence of a mode g, with k = 0
(s0w = k) in terms of Minkowski coordinates in region | as

==l b
Varmg, ' = e rontikE

= {I—rmur—ﬁ'l

— arm."r.i{_f 4 I:Irn.l_f'u. {9.152}

The analytic extension of this function throughout spacetime is straightforward;
we simply use this final expression for any values of (1, x). But we would like to
express the result in terms of the original Rindler modes evervwhere; since the
gi” modes vanish in region IV, we need 1o bring the modes g;.h into play. When
we express them in terms of the Minkowski coordinates in region [V, for k£ = 0
we obtain

. 1 gy o
\"j"IJT {1 gl"' = g reant Pk

e l,+im{r|1—£]

=g~ 18 (xR, (9.153)
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This doesn’t match the behavior of (9.152) that we want. But if we take the com-
plex conjugate and reverse the wave number, we obtain

1 T
Vanw Efi";:'a = g tan+ike

_ f—iwﬂli—ﬂ
= g'@a(p — x)yia
= @'~ T (¢t 4 xy)iie
= "R H0 (4 gylle, (9.154)
The combination
Varw ( : _”"’“gi_z;') = a4 (=1 4 x)'¥ {9.155)

15 therelore well-defined along the whole surface ¢ = (), We have cxplicitly exam-
ined the case & = 0, but an identical result obtains for & < 0.
A properly normalized version of this mede is given by

I ; -
,;I'::“ = = (P'Tur,-jﬂ ”'I-+t_—‘:l'tr1,2ﬂgl_3k] ) ("}isfﬁ

Ifhit.mh ()

This is an appropriate analytic extension of the gi" modes; to get a complete

. . - X o
set, we need to include the extensions of the g; " modes, which by an analogous
argument are given by

1
I[f'ji = amila l-—'|+ —=fda (1) 9.157
I Enlnh lw,j ( o o ) { |

To verify the normalization, for example for hl' ' we use (9.148);

] ;
(hm h;i’) = — |:E-'T[w;+u:;}l.l:!4 (3‘;{{'. }:h)
lxisinh (™21 ginh (742

+ o~ ton)/2a (#m- rz:-)]

—ky 0 Bky

_ - ]._ _[{::T[w: +i-t'].f'3f~'§{k| — k2

2, [sinh (74 ) sinh (722

b..‘l'fxl,,.-"r-r L Ja

= Bk — &3)
2sinh (F2r) T



410

Chapter 9 Quantum Field Theory in Curved Spacetime

= a{ky — k2), {9.158)

just as we would like.
We can now expand our field in these modes,

e fﬂ‘.{' (‘:.i”;‘l-h 4 ‘f:J[.-mh:.-“- & E;:mhi.‘.\+‘_?L1:+h}i21-')I (9.159)

From our discussion of Bogolubov transformations in Section 9.4, we know that
. . . . (1.2 ; (1.2}
the expressions (9.156) and (9.157) for the h, "~ modes in terms of the g,
- - o 3y -
maodes implies corresponding expressions for the Rindler operators hg'"’ 1 terms

- (1.2}
of the operators f‘; . as

b‘“.’ — _: (c.'?'m-"lﬂ{';“] + {?—.'rrrr,-"lﬂ‘:,'lz:ltj
k - { 51 k =k
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J2sinh (22)
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We can theretore express the Rindler number operator in region [,

bl k)= bV BY, (9.161)

in terms of the new operators 5?'3"
The original positive-fregquency Minkowski plane-wave modes with & = 0.
fi o e WU are analytic and bounded for complex (¢, x) so long as Im(r —
x) = 00 (Such modes are called “right-moving,” as they describe waves propagat-
ing to the right.) The same holds for our new modes hi“ so long as we take the
branch cut for the imaginary power o lie in the upper-half complex (r — x) plane.
as we can see from examination of (9.152) and (9,154 this is consistent with our
seiting —1 = ¢ '7 in (9.154). Similar considerations apply 1o the hi,h maodes,
which are analvtic and bounded in the lower-half complex (¢t + x) plane, as are
the positive-frequency Minkowski plane-wave modes with & <= 0 (left-moving).

Consequently, unlike the original Rindler modes g:_l'n_ we know that the modes

(1.2}

fi, " can be expressed purely in terms of positive-frequency Minkowski modes
Ji. They therefore share the same vacuum state [Opg), so that
-_I!IIG l_:\lr{- =0 62
ey U = |Opm) =0, (9. 1620

The excited states will not coincide, but that won't bother us, since we are inter-
ested in what a Rindler observer sees when the state 1s precisely in the Minkowski
vacuunt, An cbserver in region I, for example, will observe particles defined by
the operators by''; the expected number of such particles of frequency e will be
given by

(Onelil (k)10m) = (OmIBL BV 10w
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I - {1} =(11%
= ——(wgle mufagillal [0)
sih ﬁ_ﬁf} wl 46y 1O

e ek

= ——§(0
Zsinh (22) )

1
= a0}, (9.163)

Es].']'m,-'ﬂ
where we have used the fact that a ELI H [thyi ) is @ normalized one-particle state,
(Oom e e 0m) = 8(0). (9.164)

The delta function in (9.163) 1s merely an artifact of our use of (nensquare-
integrable) plane wave basis modes; had we constructed normalized wave packets,
we would have obrained a finite result with an identical spectrum,

The result (9.163) is a Planck spectrum with temperature

I= 1i ; (9.163)
2
Thus, an observer moving with uniform acceleration through the Minkowski vac-
wum ohserves a thermal spectrum of particles. This 15 the Unruh effect, Of
course, there is more (o thermal radiation than just the spectrum (9.163); (o be
truly thermal, we should check that there are no hidden correlations in the ob-
served particles, This has been verified; the radiation detected by a Rindler ob-
server is truly thermal, At the most basic level, the Unruh effect shows how two
different sets of observers (inertial and Rindler) will deseribe the same state in
very different terms; at a slightly deeper level, it reveals the essentially thermal
nature of the vacuum in guantum field theory,
The temperature T = a /27 is what would be measured by an observer moving
along the path &€ = 0, which feels an acceleration ¢ = a. Using (9.133), we know
that any other path with & = constant feels an acceleration

@ = ae” (9.166)

and thus should measure thermal radiation with a temperature ¢ /2, This 1s con-
sistent with our discussion in Chapter 6 of the redshift witnessed by static ob-
servers moving along orbits of some Killing vector K#: we found that radiation
emitted with frequency @y at a point & would be observed at a point xz with a
frequency

Vy

W = —u, (%.167)

Va
where the redshift factor V is the norm of the Killing vector, In (9.137) we found
that the redshift factor associated with 9, 15 V = ¢ 5o that

wy = HIHEI".EZHEUI‘ f‘}lﬁg}
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Thus, if an observer at £ = 0 detects a temperature T = a /2, the observer at
E> = £ will see it to be redshifted to a témperature T = ae % /2, just as in
{9.166). In particular, the temperature redshifts all the way to zero as £ — -+oc.
This makes sense, since a Rindler observer at infinity will be nearly inertial, and
will define the same notion of vacuum and particles as an ordinary Minkowski
ohserver.

The Unruh effect tells us that an accelerated observer will detect particles in the
Minkowski vacuum state, An inertial observer, of course, would describe the same
state as being completely empty; indeed, the expectation value of the energy-
momentum tensor would be (7,,) = 0. But if there is no energy-momentum,
how can the Rindler observers deiect particles? This is a subtle issue, but by no
means 4 contradiction, 1 the Rindler observer is to detect background particles,
she must carry a detector—some sort of apparatus coupled w the particles being
detected. But if a detector is being maintained at constant acceleration, energy is
not conserved; we need to do work constantly on the detector to keep it accel-
erating. From the point of view of the Minkowski observer, the Rindler detector
emits as well as absorbs particles; once the coupling is introduced, the possibility
of emission is unavoidable. When the detector registers a particle, the inertial ob-
server would say that it had emitted a particle and felt a radiation-reaction force in
response. Ultimately, then, the encrgy needed 10 excite the Rindler detector does
not come from the background energy-momentum tensor, bul from the energy we
put into the detector to keep it accelerating.

THE HAWKING EFFECT AND BLACK HOLE EVAPORATION

Even though it occurs in flat spacetime, the Unruh effect teaches us the most
important lesson of QFT in curved spacetime, the idea that “vacuum™ and “par-
ticles™ are observer-dependent notions rather than fundamental concepts. In fact,
given our understanding of the Unruh effect, we can see almost immediately how
the Hawking effect arises, This should noet be too surprising, as we have already
noted the similarity between the causal structure of Rindler space and that of the
maximally-extended Schwarzschild spacetime describing an clernal black hole.
We will therefore be able to argue in favor of Hawking radiation without ever
doing an explicit calculation in curved spacetime; of course, there are many fea-
tures that vou might like to investigate in more deail, for which the full power of
the curved metric is necessary. In addition to Birrell and Davies (1982) and Wald
(1994, there are good review articles where you can find a more full discussion
of the issues discussed here.” Our derivation of Hawking radiation follows that of
Jacobson.

A Jacobson, “Imtroductory  Lectures on Black Hole Thermodynamics” Lectures at Uini-
versity of Utrecht (1996), http://fwew.fys.ruu.nl/ vwwthe/lectures/itfun-0196.ps;
R.M. Wald, “The thermodynamics of black holes”” Living Rev. Rel 40 6 (2001), http://
arxiv.eorg/gr-qc/8912119; I Traschen, "An intreduction to black hole evaporation™ (20040),
http://arxiv.org/gr-qc/ 0010065,
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Consider a static observer at radius vy > 20 M outside a Schwarzschild black
hole. Such an observer moves along orbits of the timelike Killing vector K =
dy. In Chapter 6 we showed that the redshift factor V = \/:ff ,,'f i for static
observers in Schwarzschild is given by

T A Af
[ 2GM
v=y1- r‘ . (9.169)

with a corresponding magnitude of the acceleration given by
GM

rr—2GM

For observers very close 1o the event honizon, rp — 2GM << 2G M, this accelera-

tion becomes very large compared to the scale set by the Schwarzschild radius,

[
2GM°

The Schwarzschild radius in turn sets the radius of curvature of spacetime near the
horizon. Therefore, as observed over length- and timescales set by a, ' <« 2GM,
spacetime locks essentially flat Let us make the crucial assumption that the guan-
tum state of some scalar field ¢ looks like the Minkowski vacuum (free of any par-
ticles) as seen by freelv-falling observers near the black hole, This assumption is
reasonable, since the event horizon is not a local barrier; a freely-falling observer
sees nothing special happen when crossing the horizon. Then the static observer
looks just like a constant-aceeleration observer in flat spacetime, and will detect
Unruh radiation at a temperature 71 =« /27,

Now consider a slatic observer at infinity, or at least a distance r; large com-
pared to 2G M. In thal case there is no sense in which the spacetime curvature can
be neglected over limescales a, ' 5 2G M. so there is no reason to expect that
they will see radiation with a temperature g; /27, where a2 is evaluated at s But
the radiation observed near the horizon will propagate w infinity with an appro-
priate redshift, We can apply the argument used at the end of the last section o
determine what such an observer should see; they should detect thermal radiation
redshifted to a temperature

(9.170)

a=

i) B (9.171)

Vi Vi a
SRy NP 0 9,172
& Vo o Va 2 : ?

Al infinity we have V3 — 1, so the observed lemperature is

. Via K ’
= lim e = —, (9.173)
n==2GM 2T im
where & = hm(Va) is the surface gravity; for Schwarzschild, x = 1/4G M.

Unlike for accelerating observers in flat spacetime, in Schwarzschild the static
Killing vector has finite norm at infinity, and the radiation near the horizon red-
shifts to a finite value rather than all the way to zero, Observers far from the black
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hole thus see a flux of thermal radiation emitted from the black hole at a temper-
ature proportional Lo its surface gravity. This is the celebrated Hawking effect,
and the radiation itsell 15 known as Hawking radiation,

Despite its slickness, there is nothing dishonest about this derivation of the
Hawking eftect. In particular, the relation to acceleration makes it clear why the
temperature is proportional to the black hole surface gravity (which continues o
hold for more general black holes, not only Schwarzschild). However, we need
to be clear about the assumption we made that the vacuum state near the horizon
looks nonsingular to freely-falling observers. In technical terms, the renormalized
energy-momentum tensor is taken to be finite at the horizon, or equivalently, the
two-point function obeys the Hadamard condition (9.123),

The meaning of this assumpuon becomes more clear by considering possible
vacuum states in the maximally extended Schwarzschild geometry, Such states
are not necessarily physically relevant to a realistic black hole formed by gravita-
tional collapse, but the possibilities that arise in the idealized case carry instruc-
tive lessons for the real world., We will only desenbe the states, not specify them
guantitatively or derive any of their properties; for more details see the references
above.

In searching for a vacuum state, we might begin by looking for a state that is
regular [in the Hadamard sense, (9.123)] throughout spacetime. For maximally
extended Schwarzschild, such a state was found by Hartle and Hawking, so we
call 1t the Hartle-Hawking vacuum: indeed, this 1s the unique vacuum state that
is regular everywhere and invariant under the Schwarzschild Killing vector
representing time translations at infinity, In particular, recalling the conformal
diagram of Schwarzschild shown in Figure 5.16, the Hartle-Hawking vacuum
is regular on the past and future event horizons H= at r = 26 M, and also on
past and [uture null infinity 9=. From the consideration of static observers as
outlined above, we should then expect that the Hartle-Hawking vacuum features
thermal radiation being emitted from the black hole, and indeed this s out w
be true. However, a close examination of this state reveals that there is an equal
flux of thermal radiation coming in from past null infinity (37 ) toward the black
hole; in other words, it represents a black hole in thermal equilibrium with its
environment. This is not what we would use to model a realistic black hole in our
universe. Another vacuum, more closely analogous o that of a black hole formed
vig gravitational collapse, is the Unruh vacuum, which is nonsingular on #°
(and therefore predicts outgoing Hawking radiation), but exhibits no incoming
radiation from % . The Unruh vacuum turns out to be singular on the past horizon
H ™ of Schwargschild; this doesn’t bother us if we are only using it as a model
for realistic black holes, since a spacetime featuring gravitational collapse as in
Figure 5.17 wounld not have a white hole or any past horizons. Finally, we might
look for a vacuum state in which no particles come into the black hole, nor escape
to infinity; in other words, vanishing flux at =, There is such a state, called the
Boulware vacuum. The existence of such a state seems to be in contlict with
our argument for the Hawking effect from the Unruh effect. except that a careful
analysis reveals that the Boulware vacuum 1s singular both on B~ and H* . Thus,
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the assumption that the vacuum 1s regular as seen by freely-falling observers near
the horizon is violated in this state,

So a careful examination of vacuuwm states in an eternal Schwarzschild metric
is consistent with our reasoning from the Unruh effect; states that are regular on
H ™ predict Hawking radiation of the expected form, Note that the existence of
an event horizon is crucial to the argument: without such an horizon, the require-
ment that the state be regular on the horizon has no foree, Consider for example
a neutron star, whose radius may be close 1o the Schwarzschild radius but lor
which the spacetime is free of any horizons, Neutron stars do not emit any Hawk-
ing radiation, One way 1o understand this is o recognize that a static neutron-star
metri¢ features a Killing vector that is timelike everywhere, and can be used to
define positive-frequency modes that extend throughout the spacetime and match
the Minkowski modes al infinity. The resulting vacuum state would actually re-
semble the Boulware vacuum, free of flux at 5= the fact that the full Boulware
vacuum is singular on the horizon doesn’t bother us in the neutron-star case, since
there aren't any horizons,

Tex be absolutely sure that we have correctly chosen a vacuum state appropriate
to realistic black holes, we should consider gravitational collapse in a spacetime
that is nearly Minkowskian in the past and Schwarzschild in the future, as in
Figure 5.17. If the vacuum takes the standard Minkowski form on $7, we can
ask how the modes propagate through the collapse geometry to J 7, defining an
S-matrix as in (9.43) to determine what would be seen by asympiotic observers.
This is in fact what Hawking did when he first discovered black hole radiation;
the calculanions involve some messy algebra bul are basically straightforward,
with the same answer for the temperature as we derived above,

Of course, [rom a complete calculation we can learn more than just the black-
body temperature; we might ask, for example, what happens when the wavelength
of the emitted radiation is comparable to the Schwarzschild radius, in which case
our approximations clearly break down. If we were to carefully investigate the
emission of arbitrary species of particles from any kind of black hole (that s,
allowing for both charge and spin), we would find that the spectrum of emitted
radiation takes the form

I (en)

PR =K £ | (9.174)

() =
Here, « 1s of course the surface gravity. The parameter p 1s a chemical poten-
tial. characterizing the tendency of the black hole to shed its conserved guantum
numbers: a charged black hole prefercntially emits particles with the same-sign
charge as the hole, while a rotating black hole preferentially emits particles with
the same-sign angular momentum as the hole, Hawking radiation therefore tends
to bring black holes 1o a Schwarzschild state. ') 15 a greybedy factor, which
can be thought of as arising from backscattering of wavepackets off of the gravi-
tational field and into the black hole. In the high-frequency limit the wavelength
is very small and backscattering can be neglected; at very low frequencies the
wavelength becomes greater than the Schwarzschild radius and backscattering
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becomes important. Although an analytic expression for the grevbody factor is
hard w derive, in the limiting cases of large and small frequencies the greybody
factor for a scalar field obeys

M) — 1, WP —

A
M) == 4—-—(:1"‘. [N < "E'E (9.175)
i ¥

where A is the area of the black hole,

The discovery that black holes emit thermal radiation is certainly surprising
from the point of view of classical general relativity, where we emphasized the
impossibility of escape 1o infinity from points inside the event horizon, One pic-
luresque way 1o understand what is going on is to think of vacuum fluctuations
in terms of Feynman diagrams, with the Auctuations being represented by vir-
tual particle/antiparticle pairs popping in and cul of existence. This picture is also
helpful, for example, in understanding observed phenomena such as the Lamb
shift, in which atomic spectra are affected by the interaction of photons with vir-
tual electron/positron pairs, Normally, the pairs will always annihilate, and their
effect is only indirect, through a renormalization of processes coupled to the vir-
tual particles. In the presence of an event horizon, however, occasionally one
member of a virtual pair will fall into the black hole while its partner escapes
lo infinity, as depicted in Figure 9.2 In this picture, it is these escaping virtual
particles that we observe as Hawking radiation. The wtal energy of the virtual
pair must add to zerp, but the infalling particle can have a negative energy as
viewed from infinity, because the asymptotically-timelike Killing vector is space-
like inside the horizon. The picture is somewhat informal, but provides a useful
heuristic for what is going on.

Cince we know the formula for the temperature of a black hole we can fix the
proportionality constants i the relationships between black hole parameters and

| r = 26M

FIGURE 9.2 WVacuum fuctustions occasionally result in one of a pariclefantipanicle
pair falling into the event horizon, and the other escaping to infinity as Hawking radiation.
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thermodynamic vartables, as listed in (6.118), Hawking radiation essentially con-
summaltes the marriage of black hole mechanics and thermodynamics; stationary
black holes act just like bodies of energy £ = M in thermal equilibrium with
temperature T = /2 and entropy § = A/4G, This is a very large entropy in-
deed. For mater fields in the universe, the entropy is approximately equal 1o the
number of relativistic particles; within one Hubble radius, this number works out
1o be

Sp ~ 10%, (9.176)

Meanwhile, the entropy of a black hole is the area of 1ts horizon measured in
Planck units {remember that we have been setting fi = 1 all along). We can con-
vert W astrophysical units to oblain

M\
SpH ~ iu"‘”(ﬁﬁ ) : (9.177)

Thus, a single million-solar-mass black hole (such as can be found at the center
of our galaxy, and many other galaxies) has more entropy than all of the matter
in the visible universe. The total entropy of the universe is much smaller than we
could make i1, just by putting more mass into black holes. (When cosmologists
say that the entropy Sy s large, they mean it is surprising that se much entropy 1s
found within one curvature radivs.) Presumably the reason why we are in such a
low-entropy state has 1o do with initial conditons, and perhaps with inflation.

Coming back to black hole mechanics. we see a puzzle: The entropy ol a
macroscopic black hole will be huge, but from a statistical-mechanical point of
view the entropy 1s supposed to measure the logarithm of the pumber of accessible
states. A classical black hole is specified by a small number of parameters (mass,
charge, and spin}, so it is hard to know what those states could be. Nevertheless,
we could take the attitude that this discrepancy doesn’t really mauer, since any
information about the state of a biack hole would presumably be hidden behind
the event horizon,

The inclusion of quantum mechanics makes the puzzle worse rather than better,
because black holes will not only radiate but also evaporaie. When we started our
investigation of QFT in curved spacetime, one of the rules we set was that we
would assume a fixed background metric, and not worry about the effect of the
energy-momentum tensor of the quantum fields themselves. Nevertheless, even in
quantum mechanics we have conservation of energy (in the sense, for example,
of a conserved ADM mass in an asymptotically flat spacetime). Hence, when
Hawking radiation escapes to infinity, we may safely conclude that it will carry
energy away from the black hole, which must therefore shnink in mass. (This
phenomenon does not violate the area theorem, since the quantum field energy-
momentum ensor will not obey the weak energy condition near the horizon.) As
the mass shrinks, the surface gravity increases, and with it the temperature; there
is a runaway process in which the entire mass evaporates away in a finite time.
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Plugging in the numbers gives a lifetime of order

M i W i
TaH ~ (—) Ip (T:f_ ) x 107! sec, {9.178)

mp Mg

where mp ~ 1077 g is the Planck mass and rp ~ 10~* sec is the Planck time.
Since the Hubble time is Hn_l ~ 10'® sec, a solar-mass black hole has a lifetime
of order 10°* times the age of the universe. This seems like a long time, but we
are speaking of guestions of principle here.

You can sec why the question of the black hole entropy has become so severe:
Once the black hole has evaporated. we can no longer appeal to the event herizon
as a way 1o hide purported states of the black hole. There 1s no black hole any
more, just the Hawking radiation it produced. The fact that this radiation is sup-
posed to be precisely thermal (no hidden correlations in the outgoing particles)
means that it has no way ol conveying the vast amount of information needed
to specily the states implied by our entropy calculation. Thus, il we assemble
two very different original states and collapse them into two black holes of the
same mass, charge, and spin, they will radiate away into two indistinguishable
clouds of Hawking particles. The information that went into the specification of
the system before it became a black hele seems 10 have been erased; this is the
information loss paradox. Both quantum field theory and general relativity fea-
ture unitary evolution—the information required (o specily a state at early times is
precisely equal to that needed to specify a state at later times, since they are con-
necied by the equations of motion. But in the process of combining QFT with GR
this unitarity has apparently been violated. It seems likely that we have made an
inappropriate assumption somewhere in our argument, but it is hard to see where,

One way of conveying the essence of the information loss paradox is o con-
sider a hypothetical conformal diagram for an evaporating black hole, shown in
Figure 9.3, We don’t really know what the full spacetime should look like, but
here we have made the plausible assumptions that a singularity forms, along with
an associated event horizon, both of which disappear when the black hole has
fully evaporated, leaving behind a spacetime with a Minkowskian causal struc-
ture, The problem is then obvious if we think in terms of Cauchy surfaces. The
future domain of dependence of an achronal surface stretching {rom spacelike in-
finity i to a point with r = 0 to the past of the singularity would be the entire
spacetime, so such a surface would be a Cauchy surface. But a similar surface
stretching 10 a point with r = 0 (o the future of the singularity would not he
a Cauchy surface, since the region behind the event horizon would not be in its
domain of dependence. Thus, the past cannot be retrodicted from the future, due
to the disappearance of information into the singularity. In other words, this pro-
cess seems 1o be ume-irreversible (in a microscopic sense, not merely a statistical
sense), even though the dynamical laws that were used to predict it were fully
invariant under time reversal,

In addressing the information loss paradox, keep in mind that our analysis of
black-hole evaporation has only been in the context of a hybrid theory of guantum
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FIGURE 9.3  Hvpothetical conformal diagram for an evaporating black hole, Energy is
carried away by the Hawking radiation, so that the black hole eventually evaporates away
entirely. leaving a future with the causal structure of Minkowski space. Information that
falls past the event horizon into the singulanty appears to be lost,

field theory coupled to general relativity, not in a realistic theory of quantum grav-
ity. What might be going on in the real world? One possibility is that information
really 1s lost, unitarity is vielated, and we just have to learn 1o live with it. Many
physicists find the introduction of such a fundamental breakdown of prediclabil-
ity o be unpalatabie, and arguments have also been made that unitarity violations
would necessanly lead o violations of energy conservation. Another possibility
1s that unitarity appears (o be violated in our world, but only because the infor-
mation that entered the black hole has somehow escaped o a disconnected region
of space (a baby universe). General relativity predics a singularity at the center
of the black haole. not creation of a disconnected region, but clearly we are in a
regime where guantum effects will dramatically alter our classical expectations,
so we should Keep an open mind,

Some evidence against information loss comes from string theory, String the-
wry 1s naturally defined in 10 or 11 spacetime dimensions, and leatures not only
one-dimensional extended objects (strings), but also various types of higher-
dimensional extended objects known collectively as “branes” A crucial aspect
of string theory 15 a high degree of supersymmetry relating bosons to fermions,
In the real world supersvmmetry must be spontanecusly broken if it exists at
all, since we don’t observe a bosonic version of the electron with the same mass
and charge. But as a ool for thought experiments, supersymmetry is invaluable,
Supersvmmeltric configurations of strings and branes can be assembled that de-
scribe black hole geometries in various dimensions. In string theory there is a
free parameter (really a scalar field), the string coupling, that controls the strength
of gravity as well as the strength of other forces, If we consider a configuration
describing a black hole at a centain value of the string coupling, as we decrease
the coupling the Schwarzschild radius will eventually shrink below the size of
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the configuration, which thus tums inte a collection of weakly-coupled strings
and branes. Due to the high degree of supersymmetry, we can be confident that
various charactenstics af the state remain unchanged as we vary the string cou-
pling: in particular, we expect that the number of degrees of freedom (and thus
the entropy) is unaltered. But in the weakly-coupled regime there is no black
hole, we simply have a “gas” of conventional degrees of freedom (admittedly,
of extended objects in higher dimensions), whose entropy we should be able 1o
reliably calculate,

Strominger and Vafa considered this process for a particular type of five-
dimensional supersymmeiric black hole with different Kinds of chﬂrgﬂs_"' They
found a remarkable result: the number of degrees of freedom of the system at
weak coupling matches precisely that which would be predicted based on the
entropy of the black hole al strong coupling. Since the black hole entropy de-
pends nontrivially on the charges of the configuration, it scems unlikely that this
agreement 15 simply an accident. Subsequent investigations have extended this
analysis to other kinds of black holes, for which agreement continues to be found.
Furthermore, we can even calculate the greybody factors expected for the black
hole by considering scattering off of the weakly-coupled system: again, the resull
maiches the strong-coupling expectation. Thus, in string theory at least, there is
excellent reason o believe that the degrees of freedom implied by black hole
radiation are really there.

Unfortunately, the string theory counting of states provides little diregt under-
standing ol how information about the black hole state could somehow be con-
veved to the cutgoing Hawking radiation, Nevertheless, we should certainly take
seriously the possibility that this 1s what happens, even if there are severe dif-
liculties in imagining how such a process might actually work. The difficulties
arise when considering some information, perhaps in the form of a volume of an
encyvelopedia, being tossed into a large black hole, long before it has evaporated
away. At this stage the black hole temperature is low, there is very little surface
gravity, and the spacetime curvature near the event horizon is guite small. From
the point of view of the encyelopedia, nothing special happens at the horizon,
and we should expect it 1o fall through essentially unmolested. In particular, it is
hard to imagine how the information in the encyclopedia can be transferred to the
Hawking rachation bemng emitted at early times, In umitary evolution, the informa-
tion cannot be duplicated; either it Talls past the horizon with the encyclopedia,
or 1t needs to be effectively eéxtracted just before the horizon is crossed, which
seems implausible, We might hope that the information accompanies the ency-
clopedia into a region near the singularity, and is somehow preserved there until
late times when the hole is very small. But by then most of the radiating particles
have already been emitted, and the number of states accessible to the final burst
of radiation will generally be smaller than required to describe the different states
that could have fallen into the hole.

44, Strominger and C. Vafa, "Microscopic ongin of the Bekenstein-Hawking entropy,” Phvi,
Let. B 379, 99 (1996), http://arxiv,org/hep-th/9601029. For reviews se¢ Johnson
(233) or AW, Peet, "TASI lectures on black holes in string theory (2001), htrp://f
arxiv.org/hep-th/0008241.
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To imagine that the information is somehow encoded in the outgoing radiation,
it therefore seems necessary to encode correlations in the Hawking particles even
at early tmes, We just argued that this is hard 1o do, given that the horizon s an
unremarkable place when the black hele is large. One conceivable way out of this
dilemma is to take the dramatic step of giving up on lecal quantum field theory, In
other words, we have been making the implicit assumption that information can
be sensibly described as being located in some region of space; this is an indis-
putable feature of ordinary quantum field theories. But perhaps quantum gravity
is differem, and the information conained in the black hole is somehow spread
out nonlocally across the horizon, By iself this suggestion doesn't lead direetly w
a mechanism for getting the information into the outgeing Hawking radiation, but
it does call into question some of the arguments we have given for why it would
be difficult to do so.

A particular realization of nonlocality goes under the name of the holographic
principle. This is the wdea, suggesied originally by "t Hooft and Susskind, that
the number of degrees of freedom in a region of space is not proportional o the
volume of the region (as would be expected in a local field theory), but rather 1o
the area of the boundary of the region.” The inspiration comes of course from
black hole entropy. which scales as the area of the event horizon: if the enropy
counts the number o accessible states, holography would account for why it is the
area rather than the enclosed volume that matters. You might worry about how to
deal with closed universes, in which a region might consist of almost all of space
but have a very small boundary, but a more covariant version of the holographic
principle may be formulated by replacing the region of space by a set of “light-
sheets” extending inward from the boundary. The great inumph of holography has
been in the AJS/CFT correspondence, mentioned in Chapier ¥, There, the physics
of quantum gravily in an anti-de Sitter background is equivalent to a conformal
fiecld theory without gravity defined on the boundary of AdS, which has one lower
dimension. One can imagine that all of the physical phenomena we observe in
the universe could be deseribed by the nonlocal holographic projection of some
ordinary nongravitational theory defined in lower dimensions; it is by no means
clear how we should go about constructing such a correspondence or connecting
it with ebservations, but considerations of cosmology and the large-scale structure
ol the universe might be a promising place 1w start,

These remarks about black hole entropy, string theory, and holography are ob-
viously not intended as a careful inreduction 1w what s a very active arca of
research. Rather, they are meant to indicate some of the possibilities being ex-
plored at the forefront of gravitational physics, Classical general refativity is the
most beautiful physical theory invented o date, but we have every right 1o expect
that a synthesis of GR with other arcas of physics will reveal layers of beauty we
can only now imagine.

IFor 4 review see R, Bousso, “The Holpgraphic Principle” (2002), http: //arxiv.org/bep-th/
0203101



APPENDIX

Maps between Manifolds

When we discussed manifolds in Chapter 2, we introduced maps between two
different manifolds and how maps could be composed. Here we will investigate
such maps in much greater detail, focusing on the use of such maps in carrying
along tensor fields from one manifold to another. The manifolds in question might
end up being a submanifold and the bigger space in which it is embedded, or we
might just have two different copies of the same abstract manifold being mapped
to each other.

Consider two manifolds M and NV, possibly of different dimension, with coor-
dinate systems x* and y“, respectively. We imagine that we haveamap ¢ : M —
N and a function f : ¥ — R. Obviously we can compose ¢ with f to construet
amap (f o¢) : M — R, which is simply a function on M. Such a construction
is sufficiently useful that it gets its own name; we define the pullback of [ by ¢,
denoted ¢* f, by

@' f =(f ool (A.1)

The name makes sense, since we think of ¢* as “pulling back™ the function f
from N to M (see Figure A.1).

b =fodb R

M N f

xH ¥

Rr™ R"

FIGURE A.1 The pullback of a function f from Nto M byamap ¢ : M — N 1s
simply the composition of ¢ with f.
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We can pull functions back, but we cannot push them forward. If we have a
function g : M — R, there is no way we can compose g with ¢ o create a
function on N; the arrows don't fit tegether correctly. But recall that a vector can
be thought of as a derivative operator that maps smooth functions 10 real numbers.
This allows us to define the pushforward of a vector; if V(p) is a vector at a point
pon M, we define the pushforward vector ¢b. V at the point ¢ p) on N by giving
s action on functions on N:

(@ VI = Vig® ). {A.2)

So to push forward a vector field we say “the action of ¢. V' on any function is
simply the action of V on the pullback of that function,”!

This discussion is a little abstract, and 1t would be nice to have a more concrete
description. We know that a basis for vectors on M is given by the set of partial
derivatives i, = #/dx", and a basis on N is given by the set of partial derivatives
iy = 8/3y“. Therefore we would like to relate the components of V = V*#i, to
those of (¢ V) = (. V)" 8. We can find the sought-after relation by applying
the pushed-forward vector 1o a test function and using the chain rule (2,123

(P V}““uf = V"E}“{:;ﬁ'f}
= VH,(f o)

gy
=yril_g ¢ (A.3)
das
This simple formula makes it irresistible to think of the pushforward operation ¢.
as a matrix operator, (¢, V)" = (¢ )", V¥, with the matrix being given by

o _ B°

{‘;bw} I Gy i {Ail}
The behavior of a vector under a pushforward thus bears an unmistakable resem-
blance o the vector transformation law under change of coordinates. In fact it is
a generalization, since when M and N are the same manifold the constructions
are (as we shall discuss) identical; but don't be fooled, since in general g and o
have different allowed values, and there i1s no reason for the matrix dy” fdx” 1o
he inveriible.

It is a rewarding exercise (o convince voursell that, although you can push
veetors forward from M to N (given amap ¢ : M — N), you cannot in general
pull them back—just keep trying to Invent an appropriate construction until the
futility of the attempt becomes clear, Since one-forms are dual 1o vectors, you
should not be surprised to hear that one-forms can be pulled back (but not in
general pushed forward). To do this, remember that one-forms are linear maps
from vectors 1o the real numbers, The pullback ¢"wm of a one-form « on N can

'Unfan‘una[ul}' the location of the asterisks s not completely standard: some relerences wse & super-
seript * for pushforward and a subscrpt , for pullback, so be carcful,
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therefore be defined by its action on a vector ¥V on M, by equating it with the
action of « itself on the pushforward of V;

(P w)(V) = w(g, V). (A.5)

Once again, there is a simple matrix description of the pullback operator on forms,
(¢*w)y = (%), " we. which we can derive using the chain rule. It is given by
wy O ;
(@) = dx_“ (ALB)
That is, it is the same matrix as the pushforward (A.4), but of course a different
index is contracted when the matrix acts to pull back one-forms.

There is a way of thinking about why pullbacks and pushforwards work on
some objects but not others, which may be helpful. If we denote the set of smooth
functions on M by F(M), then a vector V(p) at a point p on M (that is, an
element of the tangent space T, M) can be thought of as an operator from F (M)
1o R. But we already know that the pullback operator on functions maps F(N) to
F{M), just as ¢ itself maps M to N, but in the opposite direction. Therefore we
can define the pushforward ¢, acting on vectors simply by composing maps, as
we first defined the pullback of functions; this is shown in Figure A2, Similarly,
if T, N is the tangent space at a point g on N, then a one-form w at g (that is,
an element of the cotangent space T‘;N) can be thought of as an operator from
Ty N 1o R. Since the pushforward ¢. maps T, M 1o Ty N, the pullback ¢* of
a one-form can also be thought of as mere composition of maps, as indicated in
Figure A.3. If this is not helpful, don’t worry about it. But do keep straight what
exists and what doesn't; the actual concepts are simple, it's just forgetting which
map goes what way that leads to confusion.

You will recall further that a (0, /) tensor—one with ! lower indices and no
upper ones—is a linear map from the direct product of / vectors 1o R, We can
therefore pull back not only one-forms, but tensors with an arbitrary number of
lower indices. The definition is simply the action of the original tensor on the
pushed-forward vectors:

(@* (v @ vy = T vV g vD . VD, (A.T)

Vip) (V(p)) = Vip) o d*
d;t

FiM) FiN)

FIGURE A.2 Pushing forward a vector, thought of as composition of a map between the
spaces of functions on N and M, and a map from functions on M 1o R.
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R
P w) = wede 4 -
TpM TN

FIGURE A3 Pulling back a one-form, thought of as composition of a map between
tangent spaces TpM and TN and a map from T p N 1o R,

where Ty, ..q is a (0, 1) tensor on N. We can similarly push forward any (k, 0)
tensor §#17°#E by acting it on pulled-back one-forms:

(@S 02, ... M) =5V $'0?, ..., ¢ ™). (A.8)

Fortunately, the matrix representations of the pushforward (A.4) and pullback
(A.6) extend to the higher-rank tensors simply by assigning one matrix to each
index; thus, for the pullback of a (0, I) tensor, we have

. 3}'“' ,Bjrﬁl
G Doy = 5+ 5 T (A.9)
while for the pushforward of a (k, () tensor we have
oyt Oy e
L T T ST g
(9. 5) ot T BIF'*S . (A.10)

Our complete picture is therefore as portrayed in Figure A.4. Note that tensors
with both upper and lower indices can generally be neither pushed forward nor
pulled back.

0 $* 0
(2) (7)
FIGURE A4 A map¢: M — N allows us 1o pull back (0, [} tensors and push forward
(k. 0} tensors,
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This machinery becomes somewhat less imposing once we see it at work in
a simple example. One common oceurrence of a map between two manifolds is
when M is actually 2 submanifold of N, which we will discuss more carefully in
Appendix C. The basic idea s that there is a map from M 1o N that just takes an
element of M o the “same” element of N. Consider the two-sphere embedded
in R*, thought of as the locus of points a unit distance from the origin, 1f we put
coordinates ¥v* = (6,¢) on M = S$* and y¥ = (x, y,z) on N = R?, the map
i M — N 15 given by

di{H, ) = (sinfd cos b, sinf sin g, cos ), (A1)

Sticking the sphere into R in this way induces a metric on §2, which is just the
pullback of the flat-space metric. The simple-minded way to find this is to start
with the metric ds? = dx? + Lijr‘" + dz? on R? and substitute (A.11) into this
cxpression, vielding a metric d6? + sin” 8 d¢” on §2. Let's see how this answer
comes aboul using the more respectable formalism. (Of course it would be casier
if we worked in spherical coordinates on R, but doing it the hard way is more
illustrative.) The matrix of partial derivatives is given by

v cosfeosd  cosfsing  —sind (A.12)
dxk N —sinflsing  sinf cosd { : :
The metric on 52 is obtained by simply pulling back the metric from R,
oL Ay iy
e 4
Blue = 5n gav 0P
1 0 _
ﬁ(n ﬂinzt})' (A.13)

as you can easily check, So the answer teally is the same as you would get by
maive substitution, but now we know why,



APPENDIX

Diffeomorphisms and
Lie Derivatives

[n this Appendix we continue the explorations of the previous one, now focusing
on the special case when the two manifolds are actually the same. Thus far, we
have been carcful to emphasize that a map ¢ : M — N can be used 1o pull
certain things back (A.9) and push other things forward (A.10). The reason why
it generally doesn't work both ways can be traced 1o the fact that ¢ might not be
invertible. If ¢ is invertible (and both ¢ and ¢ are smooth, which we always
implicitly assume), then it defines a diffeomorphism between M and V. This can
only be the case if M and N are actually the same abstract manifold; indeed,
the existence of a diffeomorphism is the definition of two manifolds being the
same. The beauty of diffeomorphisms is that we can use both ¢ and ¢! 10 move
tensors from M to N; this will allow us 10 define the pushiorward and pullback
of arbitrary tensors. Specifically, for a (&, !) tensor field T#1# . on M, we
define the pushforward by

"
. (1) kY (1} e
Celi, T Yot 5 s, @ N s Y

= Ti(d*w'", ....r,ﬁ"ru"k". [¢h™ 2R AL e T e WU, (B.1)

where the w'"'’s are one-forms on N and the V¥''s are vectors on N. In compo-
nents this becomes

o Sy Ay EEM M
(T "% g g = TR o i P (B.2)
The appearance of the inverse matrix dx"/ay? is legitimate because ¢ is invert-
ible. Note that we could also define the pullback in the obvious way, but there is
no need (o write separate equations because the pullback ¢° is the same as the
pushforward via the inverse map, (¢ ']..

We are now in 2 pesition to explain the relationship between diffeomorphisms
and coordmate transformations: they are two different ways of doing precisely
the same thing. If you like, diffeomorphisms are “active coordinate transforma-
tions,” while traditional coordinate transformations are “passive”” Consider an
s-dimensional manifold M with coordinate functions x* @ M — R", To change
coordinates we can either simply introduce new functions v* : M — R® (“keep
the manifold fixed, change the coordinate maps™), or we could just as well in-
troduce a diffeomorphism ¢ @ M — M, after which the coordinates would just
be the pullbacks (¢*x3* : M — R" ("move the points on the manifold, and then
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evaluate the coordinates of the new points™), as shown in Figure B.1. In this sense,
(B.2) really is the tensor transformation law, just thought of from a different point
of view.

Since a diffeomorphism allows us to pull back and push forward arbitrary ten-
sors, it provides another way of comparing tensors at different points on a man-
ifold. Given a diffeomorphism ¢ : M — M and a tensor field TH#V# L (x),
we can form the difference between the value of the tensor at some point p and
@t [TH e, (@ p))], its value at ¢(p) pulled back to p. This suggests that
we could define another kind of derivative operator on tensor fields, one that cat-
egorizes the rate of change of the tensor under the flow of the diffeomorphism.
For that, however, a single discrete diffeomorphism is insufficient; we require a
one-parameter family of diffeomorphisms, ¢ . This family can be thought of as a
smooth map R x M — M, such that for each r € R we have a diffeomorphism
¢y, satisfying ¢ o ¢y = . This last condition implies that ¢ is the identity
map.

One-parameter families of diffeomorphisms can be thought of as arising from
vector fields (and vice-versa). If we consider what happens to the point p under
the entire family ¢y, it is clear that it describes a curve in M; since the same thing
will be true of every point on M, these curves fill the manifold (although there can
be degeneracies where the diffeomorphisms have fixed points). We can define a
vector field V#(x) to be the set of tangent vectors to each of these curves at every
point, evaluated at r = 0. An example on § 2 is provided by the diffeomorphism
@ (@, ) = (8, ¢ + 1), shown in Figure B.2, We can reverse the construction (o
define a one-parameter family of diffeomorphisms from any vector field. Given a
vector field V#(x), we define the integral eurves of the vector field to be those
curves x#(r) that solve

i
‘i =¥ (B.3)

dr
Note that this familiar-looking equation is now to be interpreted in the opposite
sense from our usual way; we are given the vectors, from which we define the
curves. Solutions to (B.3) are guaranteed to exist as long as we don’t do any-
thing silly like run into the edge of our manifold; the proof amounts to finding
a coordinate system in which the problem reduces to the fundamental theorem

i

Rﬂ
_'f'""

(¢*x)®
FIGURE B.1 A coordinate change induced by the diffeomorphism ¢ : M — M.
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1 I'qb
-

|

FIGURE B.2 A diffeomorphism on the two-sphere, given by a rotation about its axis,

of ordinary differential equations. Our diffeomorphisms ¢y represent *flow down
the integral curves,” and the associated vector field is referred to as the generator
of the diffeomorphism. (Confusingly. vector fields and their integral curves also
appear in the context of null hypersurfaces, where it is the curves rather than the
vector fields that are called “generators.”) Integral curves are used all the time in
elementary physics, just not given the name. The “lines of magnetic flux™ traced
out by iron filings in the presence of a magnet are simply the integral curves of
the magnetic field vector B.

Given a vector field V¥#(x), then, we have a family of diffeomorphisms param-
eterized by r, and we can ask how fast a tensor changes as we travel down the
integral curves. For each r we can define this change as the difference between
the pullback of the tensor to p and its original value at p,

A THHE L (p) = @f [THUH (@ (p))] = THU Ly (p). (BA)

Note that both terms on the right-hand side are tensors at p, as shown in Fig-
ure B.3. We then define the Lie derivative of the tensor along the vector field
as

Ly TRUBRE, oy =1 ( (B.5)

1=

A THY B ul___w)
=

The Lie derivative is a map from (k, /) tensor fields to (k, /) tensor fields, which
is manifestly independent of coordinates. Since the definition essentially amounts
to the conventional definition of an ordinary derivative applied to the component
functions of the tensor, it should be clear that it is linear,

Ly(aT +bS) =alyT + bLyS, (B.6)
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Tl ()]

i i

FIGURE B.3 The rate of change of a tensor along the integral curves of a vector field is
computed by comparing the original tensor T(p) at a point p to the value of T at a point

@ (p) by pulling T (¢ (p)) back to p.

and obeys the Leibniz rule,
Ly(T®@ 8 =(LvT)®S+T@(LvS), (B.7)

where S and T are tensors and @ and b are constants. The Lie derivative is in
fact a more primitive notion than the covariant derivative, since it does not require
specification of a connection (although it does require a vector field, of course). A
moment’s reflection will convince vou that it reduces to the ordinary directional
derivative on functions,

Lvf=V(f)=VF,f. (B.8)

To discuss the action of the Lie derivative on tensors in terms of other oper-
ations we know, it is convenient to choose a coordinate system adapted to our
problem, Specifically, we will work in coordinates x* = (x',...x"), such that
x! is the parameter along the integral curves and the other coordinates are cho-
sen any way we like. Then the vector field takes the form V = 8/dx!; that

is, it has components V¥ = (1,0,0, ..., 0). The magic of this coordinate sys-
tem is that a diffeomorphism by ¢ amounts 1o a coordinate transformation from
x* o y* = (x' 4+ 1, %%, ..., x"). Thus, from (A.6) the pullback matrix is sim-
ply

@) =55, (B.9)

and the components of the tensor pulled back from ¢ (p) to p are simply

GHITAI#, o (Drlp))]) = TH e, (x! +1,x%, ..., 2™, (B.10)
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In this coordinate systen, then, the Lie denvative becomes

f]
EI.PT'“: 'ukl-'|---1'.' = '-]"_1 m .m'-'l' up » {B‘l ”
LRy

and in particular the derivative ol a vector ficld U (x) is
LylU¥ = ——, (B.12)

Although this expression is clearly not covariant, we know that the commutator
[V, /] is a well-defined tensor, and in this coordinate system
[V U = Vi, Ut = U vH
at/#
HES

(B.13)

Therefore the Lie derivative of I/ with respect to V' has the same components in
this coordinate system as the commutator of 'V oand U but since both are vectors,
they must be equal in any coordinate system:

Cwl* =V U (B.14)

As an immediate consequence, we have Lyl = =Ly V. It is because of (B.14)
that the commutator is sometimes called the Lie bracket.

To derive the action of £y on a one-form a,, begin by considering the action
on the scalar awy, % for an arbitrary vector field U'". First use the fact that the Lie
dervative with respect to a vector lield reduces to the action of the vector itsell
when applied to & scalar:

Lylw, UM) = V(w, U")
V“F.l,_-[w“'[-'r'u}
VY 0 + Vi (8,0 (B.15)

1l

Then use the Leibniz rule on the original scalar
Lylw,U") = (Ly@) U™ + wy (Ly U

- L,I:Wﬁ}ﬂ”“ - rﬂFVrEi,.U“ = tU;,Ul'r'Jr,.V'“, (B.16)

Setting these expressions equal 1o each other and requiring that equality hold for
arbitrary [/¥, we see that

Lyewy, = Ir"'l'lHl-:'(J“ + (dy V¥ ey, (B.17)

which (like the definition of the commutator) is completely covariant, although
not manifestly so.
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By a similar procedure we can define the Lie derivative of an arbitrary tensor
field. The answer can be writlen

LCyTreasi, o = VOQTrKE L,

— (B VHT e L
— (B VHRTIA R, B8
+ (B, VR TR, |

+ (H’;‘ VE}TFIJ'“‘ ik pphey e

Onee again, this expression is covariant, despite appearances. It would undoubt-
edly be comforting, however, 10 have an equivalent expression that lonked mani-
festly tensorial. In fact it turns out that we can write

‘I:VT.FJHJ:..-H;.I”:mw . Vo-vd THH2 m'-".t':'--i'r

TS tV;_V'“‘jT‘\“-‘ gk e

— (W Wiy adts, =

+ (W VOTTE Ry,

+ (T VYT o +ee, (BU9)
where V), represents any symmetric (torsion-free) covariant derivative (including,
of course, one derived from a metric). You can check that all of the terms that
would involve connection coefficients if we were to expand (B.19) would cancel.

leaving only (B.18). Both versions of the formula for a Lie derivative are usetul
at different times, A particularly useful formula is for the Lie dervative of the

metric;
’C"r’.’k’.tu' = Vﬂvﬂg;u- + {vu V:‘]L‘m- == (?1"”}-"._'311?.
= '\?‘, Vi 4+ ¥V Vi, (B.20)
uar
-c-'l.»'_jif;“- == Jv“, Vuys (B.21)

where V, is the covariant denivative derived from g,

Let’s put some of these ideas into the context of general relativity. You will
often hear it proclaimed that GR is a “diffeomorphism invariant” theory. What
this means is that. if the universe is represented by a manifold M with metric
gy and matter fields v, and ¢ : M — M is a diffeomorphism, then the sets
(M, guu.lr) and (M, " gy, ¢ ) represent the same physical situation. Since
diffeomorphisms are just active coordimate transformations, this is a highbrow
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way of saying that the theory 1s coordinate invariant. Although such a statement
is true, it 15 a source of great misunderstanding, for the simple Fact that it conveys
very little information. Any semi-respectable theory of physics is coordinate in-
variant, including those based on special relatvity or Newtomian mechames; GR
is not unique in this regard. When people say that GR is diffeomorphism invari-
ant, more likely than not they have one of two (closely related) concepts in mind:
the theory is free of “prior geometry,” and there is no preferred coordinate system
for spacetime. The first of these stems from the fact that the metric is a dynamical
variable, and along with it the connection and volume element and so forth, Noth-
ing is given to us abead of time, unlike in classical mechanics or SR, As a conse-
quence, there is no way to simplify life by sticking to a specific coordinate system
adapted w seme absolute elements of the geometry. This state of affairs forces us
o be very careful; it 1s possible that two purportedly distinet configurations (of
matter and metric) in GR are actually “the same.” related by a diffeomorphism. In
a path integral approach to quantum gravity, where we would like to sum over all
possible configurations, special care must be taken not to overcount by allowing
physically indistinguishable configurations to contribute more than once. In SR or
Newtonian mechanics, meanwhile, the existence of a preferred set of coordinates
saves us from such ambiguities, The fact that GR has no preferred coordinate sys-
tem is often garbled inte the statement that it is coordinate invariant (or “generally
covariant,” or “diffeomorphism invariant™); both things are true, but one has more
content than the other,

On the other hand, the fact of diffeomorphism invariance can be put 10 good
use. Recall thal the complete action for gravity coupled to a set of mater fields
' is given by a sum of the Hilbert action for GR plus the matter action,

1 .
§ = ——Spleav] + Sylew. ¥1. 20
67 C Hl8uv] + Salgpen. ¥ (B.22)

The Hilbert action Sy is diffeomorphism invariant when considered in 1solation,
so the matter action Sy must also be if the action as a whole is 1o be invariant,
We can write the variation in Sy under a diffeomorphism as

a8 a8
58y = ff.r"x M Sgio + fd".r—'“a;w'. (B.23)
A8y et

We are not considering arbitrary variations of the fields, only those that result
from a diffeomorphism. Nevertheless, the matter equations of motion tell us that
the variation of Sy with respect 1o " will vanish for any variation, since the
gravitational part of the action doesn’t involve the matter fields. Hence, for a dif-
feomorphism invariant theory the first term on the right-hand side of (B.23) must
also vanish, If the diffeomorphism is generated by an infinitesimal vector field
V#(x}), the infinitesimal change in the metric is simply given by its Lie derivative
alang V¥; by (B.20) we have
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'5.!-,'.:1&' = E'.’E,u-
= 2V, Vi (B.24)

Setting 65y = 0 then implies

0= [d"rajﬂ V.V,
. B

- | T
e i’”.' = ,'L,r"v! —— — . BES
f‘ V=gV, (J—gﬁgau-) S

where we are able to drop the symmetrization of ¥V, V,, since 85y /82, 15
already svmmetric. Demanding that (B.25) hold for diffeomorphisms generated
by arbitrary vector fields V¥, and using the definition (4.75) of the energy-
momentum tensor, we obtain precisely the law of energy-momentum conserva-
Lo,

VT =0 (B.26)

Conservation of T, 15 a powerful statement, and it might seem surprising that we
derived it from as weak a requirement as diffeomorphism invariance. Actually we
sneaked in a much stronger assumption, namely that there is a clean separation
between the "matter” and “gravitational™ actions (in the sense that no matter fields
appeared in the gravitational action). If there were, for example, a scalar field
mudtiplying the curvature scalar and also appearing in the matter action (as in the
scalar-tensor theories discussed in Chapter 4), this assumption would have been
violated, and T, would not be conserved by itself.

Recall that in Chapter 3 we spoke of symmetries and Killing vectors, with
repeated appeals to look in the Appendices. Now that we understand more about
diffeomorphisms, it is perfectly straightforward to understand symmetries. We say
that a diffeomorphism ¢ is a symmetry of some lensor 706 the tensor is invariant
after being pulled back under ¢

o (B.27)

Although symmetries may be discrete, it is also common to have a one-parameter
family of symmetries ¢ Il the family is generated by a vector field V#(x ), then
{B.27) amounts to

LyT =0, (B.28)

By (B.12). one implication of a symmetry is that, if 7 is symmetric under some
one-parameter family of diffeomorphisms, we can glways find a coordinate sys-
tem in which the components of 7' are all independent of one of the coordinates
(the integral curve coordinate of the vector field). The converse is also true; if
all of the components are independent of one of the coordinates, then the purtial
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derivative vector field associated with that coordinate generates a symmetry of the
tensor,

The most important symmetries are those of the metric, for which @ g, =
guv. A diffeomorphism of this type 1s called an isometry. If a one-parameter fam-
ily of isometries is generated by a vector ficld K (1), then K/ tums oot to be a
Killing vector field. The condition that K# be a Killing vector is thus

Lk gue =0, (B.29)
or from (B.20),

Viu Ky =0, (B.30)
We recognize this last version as Killing™s equation, (3.174). From our discussion
in Chapter 3 we know that, if a spacetime has a Killing veetor, we can find a
coordinate sysiem in which the metric 1s independent of one of the coordinates,
and the quantity p, K" will be constant along geodesics with tangent vector p,

Onee we have set up the machinery of diffeomorphisms and Lie derivatives, the
derivation of Killing vectors proceeds much more elegantly.

EXERCISES

1. In Euclidean three-space, find and draw the imegral curves of the vector fields

y—=x d x4y i

A= P ey
roox roody
and
d ] il
B=xy——yv—
iy iy

Caleulate € = L 4 B and draw the integral curves of €.
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Submanifolds

The notion of a submanifold, some subset of another manifold which nught be
(and usually is) of lower dimension, is intuitively straightforward; it should come
as no surprise, however, 1o learn that a certain amount of formalism comes along
for the ride, Submanifolds arise all the time in general relativity—as boundaries
of spacetimes, hypersurfaces at fixed time, spaces into which larger spaces are
foliated by the action of symmetries—so it is worth our effort to understand how
they work.

Consider an s-dimensional manifeld M and an m-dimensional mamfold 5,
withm = n,and a map ¢ 1 5§ — M, If the map ¢ is both €™ and one-to-one, and
the inverse ¢ @ [ §] — §isalso C™, then we say that the image ¢| S| is an em-
bedded submanifold of M. If ¢ is one-to-cne locally but not necessarily globally
(that is, there may be seil-intersections of ¢{8] in M), then we say that $[5] is
an immersed submanifold of M, When we speak of “submanifolds™ without any
particular modifier, we are imagining that they are embedded. An m-dimensional
submanifold of an n-dimensional manifold is said to be of codimension n — m.

As discussed in Appendix A, the map ¢ : § — M can be used to push forward
(&, 0y tensors from § w0 M, and to pull back (0, /) tensors from M to 5. In partic-
ular, given a point ¢ £ 8 and its image ¢ (g) € M, the langent space T,;,,J,Hb:l.?i[
is naturally identified as an m-dimensional subspace ol the n-dimensional vee-
tor spuce Tg M. 1T vou think about the definition of a vector as the directional
derivative along a curve, this makes perfect sense: any curve ¥ : R — § clearly
defines a curve in M via composition (¢ = ¥ : R — M), which in turn defines a
directional derivative. Similarly, differential forms in M can be pulled back to §
by restricting their action (o vectors in the subspace Ty 5651

Another way to define submanifolds is as places where a collection of func-
tions takes on some specified fixed set of values, An m-dimensional submanifold
of M can be specified in terms of 1 — m functions f“(x), where a runs from 1
n — m, as the set of points x, where the /s are equal 1o some constants /2

Jr"il[.i.' }= _f',l
$Hny= 13
fﬂ‘—mi.l.'] — .f:r_”lr i[:!]
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The functions should be nondegenerate, so that the submanifold really is of
dimension m. Notice that the submanifold defined in this way is an actual subset
of M itis equivalent to what we called ¢ §] in our previous definition. For conve-
nience, we will henceforth tend 1o blur the distinction between the original space
and its embedding as a submanilold, and simply refer to “the submanifold 5.

To see the relationship between the two definitions of a submanifold, imagine
constructing a set of coordinates x* = { f%, v*} in a neighborhood of ¢ 5] € M,
consisting of the n — m functions f* and an additional m functions v*. Then
we can pull back the functions v 10 serve as coordinates on 8, and the map
¢ § — M issimply given by

& (y*) = (] ¥°) (C.2)

A simple example is the two-sphere $%, which in fact we defined as the sel of
points a unit distance from the origin in R In polar coordinates (r, 6, ¢, this
is equivalent to the requirement r = |, so the coordinate r plays the role of the
function f(x}, while ¥ and ¢ are induced coordinates on 52,

We have already meniioned i (B.3) that specifying a single vector fheld
leads toa family of integral curves, which are simply one-dimensional submani-
folds. We might imagine generalizing this construction by using a set of several
vector fields 1o define higher-dimensional submanifolds. Imagine we have an
a-dimensional manifold M, an m-dimensional submanifold 5, and a set of p
lingarly independent vector fields Vr};::' with p = m. Then the notion that these
vector fields “fit together to define 57 means that cach vector is tangent 1o §
everywhere, so that the '»’[L‘s span cach tangent space T, 5. we say that § is an
integral submanifold of the vector fields. However, any given set of vector fields
may or may not actually fit wgether to define such submanifolds, Whether they do
or not is revealed by Frobenius®s theorem: a set of vector fields Vi‘;.j fit together
to define integral submanitolds it and only if all of their commutators are in the
space spanned by the V| 's; that s, if

[Viay, Vi * = 2"V (C.3)
for some set of coefficients o (). (In the language of group theory, this means
that the vector lields form a Lie algebra.) We won't provide a proof, but hopefully
the result makes some mathematical sense. If the vector fields are going to fit to-
gether to form a submamfold 3, they must remain tangent to 8 everywhere, But
the commutator [V, W] is equivalent to the Lie derivative £y W, which measures
how W changes as we travel along V. If this Lie derivative doesn’t remain in the
space defined by the vectors, it means that W starts sticking out of the subman-
ifold 5. Examples of vector fields fitting together to form submanifolds are easy
to come by in Section 5.2 we discussed how the three Killing vectors associated
with spherical symmetry define a foliation of a three-dimensional space into two-
spheres. (Notice that the dimensionality of the integral submanifold can be less
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than the number of vector fields.) For a discussion of Frobenius's theorem, see
Schute ( 1980,

An interesting aliernative formulation of Frobenius's theorem uses differental
forms. First notice that any set ol p linearly independent one-forms w::” defines
an {n — p)-dimensional vector subspace of T, M, called the annihilator of the set
of forms, consisting of those vectors V¥ & TpM satisfying

wlPVH =0 (C4)

for all ru:'f”. So instead of asking whether a collection of vector fields fit together
to define a set of submamfolds, we could ask whether a collection of one-forms
m:f” define a set of vector subspaces that fit together as tangent spaces o a set
of submanifolds. To understand when this happens, recall the definition (C.1) of
an m-dimensional submanifold as a place where a set of p = n — m functions
FOx) are set equal o constants. A constant funetion i$ one for which the exterior
derivative (d ), = V. / vanishes but if a function is constant only along some
submanifold, that means that

ANy = VeV =0 (C.5)

for all vectors V* tangent to the submanifold, V#* e T, 5. It also goes the other
ways if a vector V#* is annihilated by all of the gradients V,, /7, it is necessarily
tangent o the corresponding submanifold 8, Therefore, if a set of one-forms arc
each exact, -:u:,” g V. f7, the vector spaces they annihilate will certainly define
submanifolds, namely those along which the s are constant, But if a set of p
one-forms annihilates a certain subspace, so will any other set of p one-forms that
are lincar combinations of the originals, We therefore say that a set of one-forms
a,y' is surface-forming if every member can be expressed as a lincar combination
of a set of exact forms; that 1s, if there exist functions ¢“p(x) and f%(x) such
that

L'.ii:” = z H‘;b‘:‘!ﬂ jlb- (C:6)
h

Of course, when handed a set of forms, it might be hard to tell whether there
exist functions such that this condition is satisfied; this is where the dual formu-
lation of Frobenius's theorem comes in, This version of the theorem states that
asel of one-forms ru:,” is surface-forming if and only if every pair of vectors in
the annihilator of the set 15 alse anmbilated by the exierior denvatives dw'™'. In
other words, the set w,;' will satisfy (C.6) if and only if, for every pair of vec-
tors V/* and WH satisfying w;” V¥ = 0 and w;’ W# = 0 for all a, we also
have

Vit VEWY = 0. (C.7)
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A set of forms w sausfying this condition is sometimes called “closed,”
which is ebviously a generalization of the notion of a single form being closed
{namely, that its exterior derivative vanishes). We won't prove the equivalence
of the dual formulation of Frobenius' theorem with the vector-field version,
but it clearty involves acting our set of forms on the vector-field commutator

(C.3).
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Hypersurfaces

A hypersurface is an (n — 1)-dimensional (codimension one) submanifold £ of
an n-dimensional manifold M. (Of course ifn = 3, ¥ might as well just be called
a surface,” but we'll continue to use “hyper-" for consistency. ) Hypersurfaces are
of grear utility in general relativity, and a lot of formalism goes along with them,
In this Appendix we collect a set of results in the study of hypersurfaces: normal
vectors, generators of null hypersurfaces, Frobemus's theorem for hypersurfaces,
Gaussian normal coordinates, induced metrics, projection tensors, extrinsic cur-
vature, and manifolds with boundary, It's something of a smorgasbord, with all
the messiness that implies, but hopefully appetizing and nutritious as well,

One way to specify a hypersurface T is by setting single function to a constant,

)y = (D1
The vector field
= g"" Vi (D.2)

will be normal to the surface, in the sense that it 1s orthogonal to all vectors in
TpZ C TpM. I ¢¥ is timelike, the hypersurface is said to be spacelike: it ¥ is
spacelike the hypersurface is timelike, and if £ is null the hypersurface is also
null. Any vector field proportional to a normal vector field,

Bt = hx)VH f (0.3}

for some function fi{x ), will itsell be a normal vector held; since the normal vector
is unigue up to scaling, any normal vector can be written in this form, For timelike
and spacelike hypersurfaces, we can therefore define a normalized version of the
normal vector,

M
" C

==+ (D.4)

K “leucH 2

Then n*n, = —1 for spacelike surfaces and n¥n, = +1 for timelike surfaces;
up to an overall orientation, such @ normal vector field is unique. For spacelike
surfaces the sign is typically chosen so as to make a” be future-directed.

Null hypersurfaces have a special feature: they can be divided ino a set of
null geodesics, called generators of the hypersurface. Let's see how this works.
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Notice that the normal vector £ is langent w £ as well as normal o it, since
null vectors are orthogonal o themselves. Therefore the integral curves o (@),
sattsfying
dx?
Hl=ey (D.5)
da
will be null curves contained in the hypersurface. These curves xM(«) necessarily
turn out to be geodesics, although o might not be an atfine parameter. To verily
this claim, recall that the general form of the geodesic equation can be expressed
as
C'”v;.!{'-- = nleeddy, (D.6)

where nie) is a funciion that will vanish if @ is an alfine parameter. We simply
plug in (D.2) and calculate:

{pvyl:r = {‘l‘ V}I?l'fl
= vrvﬂf
S o
1V, (R ). (D.7)

In the sccond line we used the torsion-free condition, that covariant derivatives
acting on scalars commute, Note that, even though ¢#¢, = 0 on T iself, we
can't be sure that V(£ # ¢, ) vanishes, since £# ¢, might be nonzero off the hyper-
surface. IT the gradient vanishes, (D.7) 1s the geodesic equation, and we're done.
But if it doesn’t vanish, we can use (£, = 0 as an alternative way to deline
the submanifold £, and its derivative defines a normal vector, Therefore, we must
have

Valb Ev) =8V = 8ty (D.8)

where g(x) is some scalar function. We then plug into (D.7) 1o get
£ = Let.. (D.9)
which is equivalent 1o the geodesic equation (D.6). OF course, once we know that a

path x* (@) is a geodesic, we are [ree to re-parameterize it with an affine parameter
Al ). Equivalently, we scale the normal vector field by a scalar function hix),
4 3 y

= hi®, (.10}

such that 4V, EY = 0. It is conventional o do exactly this, and use the corre-
sponding tangent vectors
dat

e : (D.11)

e b
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as normal vectors to £, The null geodesics o (3), whose union 15 the null hyper-
surface £, are the generators of E.

From (D.3) we know that a vector field normal 10 a hypersurface can be written
in the form £ = #V* f. In the exercises for Chapter 4 you were asked 10 show
that this implies

E“, Va1 =0, (D.12)
or in differential forms notation,
EndE=() (D.13)

The converse, that any vector field satislying this equation is orthogonal o a hy-
persurface, is harder to show from first principles, but is a direet consequence of
the dual formulation of Frobenius's theorem. Imagine we have two vectors V¥
and W#, both of which are annihilated by a one-form &, obeying (D.12). From
Frobenius's theorem (.7}, £, will define a hvpersurface if and only if

Vb VAW = 0. (D.14)

Applying the expression in (D.12) 1o V*W" and expanding the antisymmetriza-
tion brackets, we get

S Voko | VEWY

HEVEo) + SV B VI WY + 16, VB VEWY

]

16, Vi b VI WY, (D.15)

where in the last line we used the fact that V# and W are annihilated by £,. But
since Vi, £ V¥ WY is a scalar and &, is a nonvanishing one-form, the only way
([.15) can vanish is il (D.14) holds. Therefore, (D.12) will be true if and only if
£y is hypersurface-orthogonal.

It is often convenient to put a coordinate svstem on a manifold (or part of
it) that is naturally adapted 1o some hypersurface ; Gaussian normal coordi-
nates provide a convenient way 1o do just that, First choose coordinates ' =
(' ....¥" ') on E. At gach point p € E, construct the (unique) geodesic
for which n* is the tangent vector at p. Let z be the affine parameter on each
geodesic. [This parameter is unigue if o 1s normalized and z(p) = 0] Any
peint g in a neighborheod of £ lives on one such geodesic. To each such point
we assign coordinates |z, vl ... "1, where the v''s are the coordinates of
the point p connected o g by the geodesic we have constructed. These coordi-
nates {z, _a='. oo N are Gaussian normal coordinates (not 1o be confused
with “Riemann normal coordinates,” constructed by following gecdesics in all
directions from a single point p). These coordinates will eventually fail to be
well-defined 1f we reach a point where geodesics focus and intersect, but they
will always exist in some region including E. All of our statements about Gaus-
sian normal coordinates should be taken as applying in the region where they are
well-defined.
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Associated with the coordinate functions [z, v'. ..., ¥y} are coordinate-
basis vector fields (9., &, ..., -1 }. For notational convenience let’s label these
vector ficlds

(g0 =nt,
T PLY L - i
‘rjg.] = Ly ':D-Iﬁ]‘

where the first line makes sense because 9, is simply the extension along the
geadesics of the onginal normal vector n# . With respect 1o these basis vectors,
the metric takes on a simple form. To start, we know that

o ds*(d.,8.) = ngn* ==x1, (D17}

since n*' is just the normalized tangent vector to the geodesics emanating from E.
To encapsulate the sign ambiguity, let’s label this o :

g = Hynt =1, (D18}

But it is also the case that g;; = ny }’:L = (), as we can straightforwardly check.
M

Start at the original surface X, where n, Y
normal 1o X ). Then we calculate

= () by hypothesis (since n* 15

I8

E{."!F, }”“

{3

]

n"Vyln, Y;I}

SN0 Y
=1y Yui

= Yinu Vun®

]

L
= ]"i'rlv,_.tnﬂn“]
=1L (D.19)

Let’s explain this derivation line-by-line. The first line 15 simply the defimtion
ol the directional covanant denvative D /dz, The second uses the Leibmz rule,
plus the fact that ny, is parallel-transported along the geodesic (n"Vyn, = 0).
The third line uses the fact that n”* and ¥, are both coordinate basis vectors, so
their Lie bracket vanishes: [n, ¥ " = n“‘FL.FI_’:J - }r'l“f_"ﬂn“ = (). The fourth
line again uses Leibniz and the fact that ny, is parallel-transported, while the fifth
simply reflects the fact that nn" = o is a constant.
We can therefore write the metric in Gaussian normal coordinates as

ds* = odz® + y;;dy'dy’, || (D.20)

where yi; = g(d,d;) will in general be a function of all the coordinates
{z.y'.....¥""!], We haven't made any assumptions whatsoever about the ge-
ometry: we have simply chosen a coordinate system in which the metric takes a
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certain form. Notice that setting z = constant defines a family of hvpersurfaces
diffeomorphic to the onginal surface X3 the lack of off-diagonal terms g., in
(12,200 reflects the fact that the vector field n® is orthogonal 1o all of these sur-
faces, not just the original one. Gaussian normal coordinates are by no means
exotic; we use them all the time. Simple examples include inertial coordinates on
Minkowski space,

ds? = —di® + dv? +dy? 4 d2?, (D:21)
or polar coordinates in Euclidean 3-space,
ds® = dr® + r2d8® + r*sin® 6 dgp”. (D.22

Ordinary Roberison-Walker coordinates in cosmology provide a slightly less riv-
1al example,

%
ri

dr
ds® = —dr® + a%(1) s +rids? |, (D.23)

Of course, the KW geometries are highly symmetric (homogeneous and isotropic .
But, since we have just seen that Gaussian normal coordinates can always be de-
fined, we know that we can describe a perfectly general geometry by altering the
spatial components of the metric, This provides one popular way of describing
cosmological perturbations; we define “synchronous gauge™ for flat spanal sec-
lions as

ds® = —di® + a* (108 + hijydx'dxd, (D.24)

where fi;(r, X) is the metric perturbation. (The generalization 1o curved spatial
sections is immediate.y Again, we have not made any assumptions about the ge-
ometry, only chosen a potentially convenient coordinate system.

Recall that the map ¢ : £ — M that embeds any submanifold allows us to
pull back the metric from M to . Given coordinates ' on £ and x% on M, we
define the induced metric on the submanifold as

= dxtt gav
(¢ g = F o7 S (D.25)
In the case where the submanifold is a hypersurface, this induced metric is pre-
cisely the same as the y; appearing in (D.20). To see this, notice that Gaussian
normal coordinates are a special case of the natural embedding coordinates de-
scribed by (C.2), We have a hypersurface ¥ defined by & = z, on M, with coor-
dinates ' defined on £, and amap e 1 & — M given by

gy = 2t =(z.¥) (D.26)

Given the form of the metric (D.20) on M, it is immediate that under this map the
pullback (D.25) is simply

(@ 8ij = 7ij. (D.27)
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Keep in mind that this equation should only be evaluated in Gaussian normal
cooerdinates; otherwise the right-hand side doesn’t even make sense.

Along with an induced metric, submanifolds inherit an induced volume ele-
ment from the manifold in which they are embedded. Recall that a volume ele-
ment on an s-dimensional manifold with metric g, 15 given by the Levi-Civita
tensor, which can be expressed as

e =+/lgldx! Ao AdR™, (D.28)

To get a volume element on a submanifold Z, it is convenient to introduce Gaus-
sian normal coordinates (z, v', ... v* "), in which the metric takes the form
(D.20). The velume element € on T will then take the form

e=[lyldy! Ao ady™!, (D.29)

{By choosing the first coordinate to be the one normal 1o the hypersurface, we
have implicitly chosen a convention for how the orientation on M defines an ori-
emtation on £.) In these coordinates we have

Vil =yl (D.30)
and the volume element on M therefore becomes
=lyldz ady' A--ondy™ (D.31)

We can relate the two volume elements by using the normal vector o I, which
has components

nt = (1,0,....0) (D.32)
The contraction of ¢ with #" can be denoted
[e(n) I;r;---.u..l_| — ”AE}W poo iyt (DD.33)

It is then clear that, in these coordinates, we have

e(n) = V"md}" Aves A dy™!
= €. (.34}
Thus, the mnduced velume clement has components
ity = :rj‘ﬂ_f,....pm i (D.35)

But this is a relation between tensors, so will be true in any coordinate sysiem.
We can also reconstruct e from € and n*, via

|

ittty = V€ (D.36)
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as can easily be checked by contracting with 2", The notion of a submanitold
volume element will be crucial in our discussion of Stokes's theorem below.

Another concepl closely related 10 the induced metric on a hypersurface is that
of the projection tensor for a hypersurface £ with unit normal vector n', given
by

Puv = guv — anyiy, (D.37)
where o = n,n'. Let's collect some useful properties of this object. Given any
vector V* in TpM, Py, will project it tangent to the hypersurface (that is, orthog-
onal ton*);

(Puw V" = g V¥n" —anyn, V*n"

-,
=Vin, —a“V¥a,

. (D.38)

Acting on any two vectors V# and WY that are already tangent to E, the projection
tensor acts like the metric:

P VEWY =2, VFW" — an n, VWY
= VWY, (D.39)

Finally, the projection iensor is idempotent; acting two {or mere) limes produces
the same result as only acting once:

PH. P, = tt'if —an’ny ) (8" — an*n,)
=&l —an’n, —en"n, + a*ntn,
— F_ri - [D-H]']

£, is sometimes called the first fundamental form of the hypersurface. Because
it really does act like the metrie for vectors tangent to X, and hypersuriaces are
oflten spacelike, you will sometimes see it referred 10 as the “spatial metric”

Long ago when we first spoke of manifolds and curvature, we were careful
to distinguish between the “intrinsic” curvature of a space, as measured by the
Riemann tensor, and the “extrinsic” ¢urvature, which depends on how the space
is embedded in seme larger space. For example, a two-torus can have a flag metric,
but any embedding in R makes it look curved. We are now in a position to give
a formal definition of this notion, which makes sense for hypersurfaces. Let's
assume we have a family of hypersurfaces £ with unit vector field n*, and we
extend n” through a region (any way we like), Then the extrinsic curvature of
% is simply given by the Lie derivative of the projection tensor along the normal
vector feld.

K_eu'='5£npru-- (D41}
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The extrinsic curvature, sometumes called the second fundamental form of the
submanilold, is thus interpreted as the rate of change of the projection tensor (the
spatial metric, if T is spacelike) as we travel along the normal vector field: it is
independent of the extension of n* away from Z. It 15 the work of a few lines to
show that this definition is equivalent to the projected Lie derivative of the metric
isell,

Koy = § P2 PP Lo, (D.42)

We know from (B.20) that the Lie derivative of g, 1s given by the symmetrized
covariant derivative of the normal vector, so we have

Kuv = P2 PP Vi np,. (D.43)

Since we are not assuming that the imegral curves of #¥ are geodesics, we can
define the acceleration as
a* = n"Von*, {D.44)

Then it is the work of a few more lines to show that (D.43) is equivalent 1o

Ky =Vun, —aonya,. {D.45)

The extrinsic curvature has a number of nice properties. It is symmetric,
Kuv = Koa, (D.46)

which looks obvious from (D41, although not from (D.435), You can check that
(D.45) really is symmetric, taking advantage of the fact that n*' is hypersurface-
orthogenal. The extrinsic curvature is also orthogonal o the normal direction
(*purely spatial™),
Ky = 0" Vyn, —antngua,
3
=dy — O Ay
=0, (D.47)
We can define a covariant derivative acting along the hypersurface, V. by

taking an ordinary covariant derivative and projecting it. For example, ona (1, 1)
tensor X ¥, we would have

%, X4, = PO, PR PP VX, D48)

From this we can construct the curvature tensor on the hypersurface 875, lor
example by considering the commutator of covariant derivatives acting on a vector
field V¥, which is tangent to the hypersurface ( P#, VY = V),

[V, GlVE = RP o V7. (D.49)
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Two important equations relate the n-dimensional Riemann curvature to the hy-
persurface Riemann curvature and the extrinsic curvature. Gauss's equation is

RP g = PPaPP  PY PP R s + 0 (KP y Koy — K Kay).  (D.SD)
We can take the appropriate traves to get the hypersurface curvature scalar,
R= PR opy=R—0@Ryuntn" + K* — K*'K,.). (D.51)
where K = g"" K ;.. We alse have Codazzi’s equation,
Vie K" = 1P7uRyan®, (D.52)

Together, (D.50] and (13.52) are, imaginatively enough, called the Gauss—Coedazzi
equations,

To stave off confusion, we should note that the definition of extrinsic curvature
tends to vary from reference to reference, In some sources the normal vector field
is taken to be geodesic everywhere (@ = 0): things then simplify considerably,
and it’s straightforward to show that in this case we have

Kuv = -‘;-{-.-n va

= i Eng;u'
= Yyny (.33

(If we are given an entire set of hypersurfaces ahead of time, we cannot simply
assume that integral curves of the unit normal vector field are geodesics. However,
we are often given just a single surface, in which case we are allowed (o extend
the normal vector field off the surface by solving the geodesic cquation.) Other
references prefer to think of the extrinsic curvature as a tensor &; ; living on X
rather than in M, If we have an embedding ¢ @ v — a¥ this version of the
extrinsic curvature is given by the pullback.

!

(¢” K}U

dat ax®
iy (D.54)
dy! dy/

i

Il

Finally, some sources like 1o define the extrinsic curvature 1o be minus our defini-
tion, It should be straightforward o convert back and forth berween the differem
conventions,

To conclude our discussion, we mention thal a very common appearance of
hypersurfaces is as the boundary of a closed region N of a manifold M, conven-
tonally denoted dN, If for example N consists of all the elements of R that licat
a distance from the origin e < 1, the boundary dN is clearly the (n — 1)-sphere de-
fined by r = 1. We may extend this notion to cases where we are not considering a
closed region, but an entire mamfold with a boundary attached, A manifold with
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boundary is 4 set equipped with an atlas of coordinate charts, exactly as i our
definition of @ manifold in Chapter 2, except that the charts are taken to be maps
to the upper half of R”: the set of n-tuples {x', ..., x"} with x! > 0. The bound-
ary dM is the set of points that are mapped 10 x' = 0 by the charts: Then 8M is
naturally an {n — 1)-dimensional submanifold (without boundary). An example
of a boundary of a manifold will appear in our later discussion of conformal dia-
grams, in which conformal infinity can be thought of as a boundary to spacetime.
By continuity, we can treal the boundary as a hypersurface, including inducing
metrics and so on: occasionally we need 1o be careful in taking derivatives on the
boundary, but for the most part we can trust our intuition.
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Stokes’s Theorem

In Section 2,10 we intreduced the idea that integration on a manifold maps n-form
fields to the real numbers. This point of view leads o an elegant statement of ong
of the most powerful theorems of differential geometry: Stokes’s theorem, This
theorem is the generalization of the fundamental theorem of caleulus, [’ dx =
a—b. Imagine that we have an n-dimensional region M (which might be an entire
manifold) with boundary 8 M, and an (n — 1)-form w on M, We will soon explain
what is meant by the boundary of a manifold. Then des is an n-form, which can
be integrated over M, while w itself can be integrated over #M. Stokes's theorem

is simply
i j dw = j i {(E.1N
M aM

Different special cases of this theorem include not only the fundamental theorem
of calculus, but also the theorems of Green, Gauss, and Siokes, familiar from
vector calculus in three dimensions.

The presentation (E.1) of Stokes's theorem is extremely elegant, almost too
clegant to be useful, We ¢an, fortunately, recast it 1n pedestrian coordinate-and-
index notation. It is convenient o first write the (n — 1)-form w as the Hodge dual
of a one-form V.,

o= %V, (E.2)
with components

s 7
W)ty = (V) e opt

J

. I ”
=€ u Hn—l‘Il

= Eyp)fly) 1'”', (E.3)

where € is the Levi—Civita s-form on M and we have raised the index on V in the
last hine. If we wanted to construct V from w, we apply the Hodge operator again
Lo obtain

V(=" sV = (=11 w, (E.4)
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where 5 equals —1 for Lorentzian signatures and +1 for Evuclidean signatures,
The exterior derivative of v = #V is an n-form. given by
(ded)sps ey = % Vi, gy
= VA€ pae V)
{41 -:J.-_--|vl|vll- (E.5)

= He,

where n is the dimensionality of the region, not o be confused with the normal
vector n* to the boundary. But any n-form can be wrillen as a funchon [ (x) tumes
€, or equivalently as the Hodge dual of f(x),

dw = fe =%f. (E.6)

Taking the dual of both sides gives

f=(=*xf =(~1) *xdw: {ET)
In our case,
#le) = #d = V
| . .
=] ;'EAI R T {“EL-|;.!;---H,,_.V.1]V"_]i
1 '
= 1) (n— DBV
TR
= (—1)y'V,. V" (E.B)

Finally we recall that the Levi—Civita tensor is simply the volume element,
e=/lglde! A ionda”
= /leld"x. (E.9)
Putting it all together, we find
dw = V,V"/|gld"x, (E.10)

So the exterior derivative of an (n — 1)-form on an # manifold is just a slick way
of representing the divergence of a vector (times the metric volume element).

To make sense of the right-hand side of (E. 1), we recall from the previous Ap-
pendix that the induced volume element on a hypersurface (such as the boundary)
is given by

e=|y|d" "y, (E.11)

where y;; is the induced metric on the boundary in coordinates y'. The compo-
nents of € in the x* coordinates on M are

- e -
Eptyorpin = W €0y pin g s (E.12)
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where n¥ is the unit normal to the boundary. For a general hypersurface, the sign
of n# is arhitrary; when the hypersurface is the boundary of a region, however,
we have a notion of inward-pointing and outward-pointing, A crucial point is
that, to correctly recover Stokes’s theorem, n should be chosen to be inward-
pointing if the boundary is imelike, and outward-pointing if it's spacelike. Since
e s an (n — 1)-form, it must be proportional te € when restricted to the (n — 1)-
dimensional boundary, Following in the path of the previous paragraph, we derive

w o=, V¥ ./’?ﬁm_l_‘r. (E.13)

Stokes’s theorem therefore relates the divergence of the vector field 1o its value
on the boundary:

f{a‘”.rv.,fm T VH = ﬁ‘d 4"y ..,am g W, (E.14)
| & (1

This is the most common version of Stokes’s theorem in general relativity.

You shouldn't get the impression that we need 1o descend to index notation
1o put Stokes’s theorem 1o use. As a simple counterexample, let’s show that the
charge associated with a conserved current is “conserved” in a very general sense:
Not only is it independent of time in some specific coordinate system, but also the
charge passing through a spacelike hypersurface £ is (under reasonable assump-
tions) completely independent of the choice of hypersurface. Start by imagining
that we hiave a current J™ that is conserved, by which we mean

) (E.15)

In terms of the ene-form J, = g, J", we can translate the conservaton condition
into

di=J) = 0. (E.16)

We then define the charge passing through a hypersurface X via

e :—f . (EAT)
=

Tyvpically we will choose Z to be a hypersurface of constant time, so that Oy is
the 1otal charge throughout space at that moment in time; but the formula is appli-
cable more generally. The minus sign is a convention, which can be understood
by converting (1emporarily) 1o components, Comparing to (E.2) and (E.13), we
can tum (E.17) into

Ox =_f d" 'y /vl ng ¥, (E.18)
y 2

We see that the minus sign serves to compensate for the minus sign that the time
component of n* picks up when we lower the index, so that a positive charge
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Appendix B Stokes’s Theorem

density p = J° yields a positive integrated total charge. Mext imagine a four-
dimensional spacetime region R, defined as the region between two spatial hyper-
surfaces £y and 3, as shown in Figure E.1; the part of the boundary connecting
these two hypersurfaces is assumed to be off at infinity where all of the fields van-
ish, and can be ignored. The conservation law (E.16) and Stokes’s theorem (E. 1)

then give us
= f d(=J)
R

=f .
L.*J f,

= - (E.19)

The minus sign in the third line is due (o the orientation on X7 inherited from
R; the normal vector is pointing inward, which is opposite from what would be
the conventional choice in an integral over L. We see that Q¢ will be the same
over any spacelike hypersurface I chosen such that the current vanishes at infin-
ity. Thus, Stwokes’s theorem shows how the existence of a divergenceless current
implies the existence of a conserved charge.

Another use of Stokes’s theorem (corresponding to the conventional use of
Gauss's theorem in three-dimensional Euclidean space) is to actually calculate
this charge Q by integrating over the hypersurface. Thinking momentarily about
the real world, let's consider Maxwell's equations in a four-dimensional space-
time. These equations describe how the electromagnetic field strength tensor Fyp
responds to the conserved current four-vector,

VuF'¥ =J% (E.20)
We can therefore plug ¥V, F'# into (E.18) to calculate the charge:
Q= = f d>y 1y n Y FPY, (E.21)
b
Whenever we are faced with the divergence of an antisymmelric tensor field
Fuv = — F" integrated over a hypersurface T, we can follow similar steps

to those used o arrive at (E.14), 1o relate the divergence 1o the value of F*" on
the boundary, this time at spatial infinity (if the hypersurface is timelike):

j;:dn_]-'" Viyinu Vo F* = fax d" 22,/ ly OB ny0, FH, (B4

where the z“'s are coordinates on 4 £, ngzh i5 the induced metric on 4 Z, and a#
is the unit normal to dZ. You might worry about the integral over 4E, since the
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boundary of a boundary is zero: but E is not the entire boundary of any region,
just a piece of one, so it can certainly have a boundary of its own.

Just to make sure we know what we're doing, let's verify that we can actually
recover the charge of a point particle in Minkowski space. We write the metric in
polar coordinates,

ds® = —di® +dr? + r2d8% + r¥sin® 0 dg*. (E.23)

The electric field of a charge g in our units (Lorentz-Heaviside conventions,
where there are no 47 s in Maxwell's equations) is

gr=—2

= —, (E.24)
dmr-

with other components vanishing; this is related to the field strength tensor by

F'"'=—F" = ET, (E.25)
The unit normal vectors are
n* =(1,0,0,0), o¥=(0,1,00), (E.26)
so that
Ry FP = <EN = —#. (E.27)

The metric on the two-sphere at spatial infinity is

yia dztdz? = r?ap?® + ¥ sin 6 dgp?, (E.28)

so the volume element is
p—

d*zy) 15 = r*sin6 db dg. (E.29)

Plugging (E.27), (E.29), and (E.21) into (E.22) gives

P 7

_ . 2. g
Q@ =-— lim j_;-' dtt dep r= sindl (—;1in 2)
=4, (E.30)

which is just the answer we're looking for,



APPENDIX

Geodesic Congruences

In Section 3.10 we derived the geodesic deviation equation, governing the evo-
lution of a separation vector connecting 4 one-parameter family of neighbor-
ing geodesics. A more comprehensive picture of the behavior of neighboring
geodesics comes from considering not just a one-parameter family, but an en-
tire congruence of geodesics. A congruence is a set of curves in an open region
of spacetime such that every point in the region lies on precisely one curve. We
can think ol a geadesic congruence as tracing the paths of a set of noninteracting
particles moving through spacetime with nonintersecting paths. If the geodesics
cross, the congruence necessarily comes to an end at that point. Clearly, ina multi-
dimensional congruence there is a lot of information 10 keep track of;, we will be
interested in the local behavior in the neighborhood of a single geodesic, for which
things become guite tractable,

Let U = dx® /dr be the tangent vector field to a four-dimensional timelike
geodesic congruence: equivalently, the four-velocity field of some pressureless
fhuid. {17 the fluid were not pressureless, integral curves of U would not in gen-
eral describe geodesics. ) Null geodesics present special problems, which we will
return 1o later; for now stick with the timelike case. For reference we recall that
the tangent field is normalized and obeys the geodesic equation:

U, U = =1, U U*=0. (F.1)
When we discussed the geodesic deviation equation 1n Section 3,10, we consid-

ered a separation vector V¥ pointing from one geodesic 1o a neighboring one. and
found that it obeved

Dv#

dt

="V, V¥ = B* VY, (E2)
where
B*, =V, U", (E3)

{In Chapter 3 we used 7 instead of [/, and § instead of V) The tensor B, there-
fore can be thought of as measuring the failure of V# o be parallel-transported
along the congruence; in ather words, it describes the extent w0 which neighboring
geodesics deviate from remaining perfectly parallel.

T deal with an entire congruence, rather than just a one-parameter family of
curves, we can imagine setting up a set of three normal vectors orthogonal to our
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timelike geodesics, and following their evolution. The failure of this set of vectors
1o be parallel-transported will tell us how nearby geodesics in the congruence are
evalving. Egquivalently, we can imagine a small sphere of (est particles centered at
some point, and we want 1o describe quantitatively the evolution of these particles
with respect to their central geodesic, Fortunately, all we have to keep track of is
the behavior of By,

Given the vector field U'*, at cach point p we consider the subspace of Ty M
corresponding to vectors normal to UF, Any vector in 7, M can be projected into
this subspace via the projection tensor

P, =&+ U"U,, (F.4)

familiar from our discussion of submanifolds in Appendix D In ihis case we are
not projecting onto a submanifold, only onto a vector subspace of the tangent
space, but the idea is the same. We notice that B, is already in the normal sub-
space, since

UH By = URF,U, = 0
U B.u p=U vvi'uﬁ =1, (F.5)

The first of these follows from ¥V (U#U,) = Vu(=1) = 0, while the second
follows from the geodesic equation. We should not confuse B, with the extrinsic
curvature K, from (D.53); the difference 15 that our tangent vector field 07 will
generally not be orthogonal to any hypersurface,

As a (0, 2) tensor, By, can be decomposed into symmetric and antisymmetric
parts, and the symmetric part can further be decomposed into a trace and a trace-
free part. Since By, is in the normal subspace, we can use Py, 1o take the trace in
this decomposition. The result can be written

_B;”. == ;—HPJ.“ + ﬂ!”.- -+ UJ:”. I:’:F'-(f_'l]'

Here we have introduced three quantities describing the decomposition, starting
with the expansion 6 of the congruence,

6 = P*VB,, = V,U*, (E7)

which is simply the trace of £,,. The expansion describes the change in volume
of the sphere of test particles centered on our geodesic, 1t is clearly a scalar, which
makes sense, since the everall expansion/contraction of the volume is described
by a single number. The shear o, is given by

Tpp = ﬁ[,lnl] T _lq,H-Pu'u- (F.8)

It is symmetric and traceless. The shear represents a distortion in the shape of
our collection of test particles, from an initial sphere into an ellipsoid: symme-
try represents the fact that elongation along (say) the x-direction is the same as
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elongation along the —x direction. Finally we have the rotation ey, given by
Wy = 5““-]. (F3)

It 15 an antisymmetnic tensor, which also makes sense; the xy component (for
example) describes a rotation about the 7 axis, while the vx component describes
a rotation in the opposite sense around the same axis.

The evolution of our congruence is described by the covariant derivative of
these quantities along the path, D /dt = U” V. We can straightforwardly calcu-
late this for the entire tensor B, and then take the appropriate decomposition,
We have

DB,

= UV B, = UV, VU,
T

= UV, Vol + U° R s Us
= ViUV, Uy) = (VU NV Up) = Ripua UTU*
= —B7,Bus — Rauna U U™, (F.10)

Taking the trace of this cquation yields an evolution equation for the expansion,

de | e
== —-_;'{?" = e + aypet” — Ry MUY, (E11)
¢ :

This is Raychaudhuri’s equation, and plays a crucial role in the proofs of the sin-
gularity theorems. [Sometimes the demand that the congruence obey the geodesic
equation is dropped; this simply adds a werm V(" V, U} to the right-hand
side.] Similarly, the symmetnic trace-free part of (F.10) is

Dy 2 |
MY w“ 2 wp (el
= =8y — Fuad v — Wppw®y -"ipi“'qﬂuﬂﬂ — Wypw™")

dar 3

-
+ E‘w'“ﬁu“{jﬁ + Ean'- (F.12)

where R,n, is the spatially-projected trace-free part of R,
Ryy = P PP Rag — L Py PP Rag, (F.13)

and the antisymmerric part of (F 10} is

-

DU} I Ps -
—E = — i‘e"mu w+ Jﬂ&muw =T 51-“"-’;“;- (F.14)

dr

These equations do not get used as frequently as Raychaudhurt's equation, but
they're nice to have around.
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Let's give a brief example of the way in which Raychaudhun's equation gets
used. First notice that, since the shear and rotation are both “spatial” tensors, we
have

1l F o ¢ =
oua® = 0. wye't = 0. (F.15)

Next, nolice that the last term in (F 11) is just what appears if we combine Ein-
stein's equation with the Strong Energy Condition; from Einstein's equation we
kaow

R U U" = 872G (T, — | Tgu) UL, (F.16)

and the SEC demands that the right-hand side of this expression be nonnegative
for any timelike U'#. We therefore have

R UPUY 20 (E.17)

il the SEC holds. Finally, note that e, = 0 if and only if the vector field U* is
orthogonal to a family of hypersurfaces. This follows straightforwardly from the
fucts that the rotation 1s a spatial tensor (U ey, = 0), and by Frobenius’s theorem
a necessary and sufficient condition for a vector field U 1o be hypersurface-
orthogonal is U, ¥y Ua): the details are left for you to check. Therefore, if we
have a congruence whese tangent field is hypersurface-orthogonal, in a spacetime
oheving Einstein's equations and the SEC, Raychaudhuri’s equation implies
dfl 1 5

— < —=", (F.18)
dr = 3

This equation is easily integrated Lo obtain
o7 @ 267" + 4. (F.19)

Consider a hypersurface-orthogonal congruence, which is initinlly converging
{fy = ) rather than expanding. Then (E.19) wells us convergence will continue,
and we must hil a caustic (a place where geodesics cross) in a finite proper time
T = —Sﬁ'ﬂ'l_ In other words, matter obeying the SEC can never begin w push
geodesics apart, it can only increase the rate at which they are converging. Of
course, this result only applies to some arbitrarily-chosen congruence, and the
appearance of caustics certainly doesn’t indicate any singularity in the spacetime
{eeodesics cross all the time, even in flat spacetime ). But many ol the proofs of the
singularity theorems take advantage of this property of the Raychaudhuri equation
to show that spacetime must be geodesically incomplete in some way.,

We wurn next 10 the behavior of congruences of null geodesics. These are wick-
ier, essentially hecause our starting point (studying the evolution of vectors in a
three-dimensional subspace normal to the tangent field) doesn’t make as much
sense, since the tangent vector of a null curve is normal to itself. Instead. in the
null case what we care about is the evolution of vectors in o rwo-dimensional sub-
space of “spatial” vectors normal o the null tangent vector field £ = dx® /di,
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Unfortunately, there is no unigue way 1o defing this subspace, as observers in
different Lorentz frames will have ditferent notions of what constitutes a spatial
vector. Faced with this dilemma, we have two sensible approaches. A slick ap-
proach would be to define an abstract two-dimensional vector space by starting
with the three-dimensional space of vectors orthogonal 1o &%, and then taking
equivalence classes where two vectors are equivalent if they differ by a multiple
of £#, The grungier approach, which we will follow, 1s simply to choose a second
“auxiliary” null vector I, which (in some frame) points in the opposite spatial
direction to £¥, normalized such that

1, =0, Uk, =-1. (F.20)
We furthermore demand that the auxiliary vector be parallel-transported,
k“‘?ﬂ!“ = {J, (F21)

which is compatible with (F.20) because parallel transport preserves inner prod-
ucts. The auxiliary null vector I is by no means unigue, since as we've just noted
the idea of pointing in opposite spatial directions is frame-dependent. Neverthe-
less, we can make a choice and hope that important quantities are independent of
the arbitrary cheice, Having done so, the two-dimensional space of normal vec-
tors we are interested in, called T, consists simply of those vectors V# that are
arthogonal to both &% and [+,

Ty = [(VEVAE, =0, V¥, = 0] {F.22)

Our task now is to follow the evelution of deviation vectors living in this subspace,
which represent a family of neighboring null geodesics.

Projecting into the normal subspace T requires a slightly modified definition
of the projection tensor; it turns out that

QHI.' = ..ifptl' -+ klrdf'r + 'e‘-:'jlrx LF,23j
does the trick. Namely, @, will act like the metric when acting on vectors V¥,

W in Ty, while annihilating anything proportional 10 &% or I*, Some useful
properties of this projection tensor include

Qi VWY = g, VEW?
Gﬁr VT _ L.J,lr
Q'uk" =0
QY =0
Q“%.'Q“ﬂ . Q'ur:
K9, 0F . = 0. (F24)
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Just as for timelike geodesics, the failure of a normal deviation vector V¥ to
be parallel-propagated is governed by the tensor BY, = V&, in the sense thal

Dye
d X

= KV, V¥ = B* VY, (F.25)

However, in the null case the tensor By, 15 actually more than we need; the rele-
vant information is completely contained in the projected version,

E“'L' = Q“u'ﬂ'ﬁuﬁuﬁ- {F.26)

To see this, we simply play around with (F25), using the various properties in
{F.24):

DLTFJ = krv“ LH’-‘

d i

= £V, (0", V)

= QF K"V, V2P

S LT

= Q" B”, 0",V

= BY, V7. (F.27)

So we only have o keep rack of the evolution of this projected ensor, not the full
Bu pe

To understand that evolution, we again decompose into the expansion, shear,
and rotation:

Buy = 360 + Gy + D (E.28)
where
8 = Q"' By, = B*,
Gy = E“u.-, - {.-I":‘Q‘“-

Buv = Bluv)- (F.29)

We find factors of w: rather than % because our normal space T is two-dimen-
stonal, reflected in the fact that Q¥ Q. = 2. As in the umelike case, @y, = 0
is a necessary and sutlicient condition for the congruence 1o be hypersurface-
orthogonal, The evolution of 8, along the path is given by

= Rﬂvﬂ‘ E.'n' =R Vﬂtﬂup Qﬁrvukﬁ:'

= 0%, 0P KV, Vukp
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= —Q". 0%\ (By" Bpo + Ruppak*k")
=B, Boa — 040" Runsk*k®.  (F30)

Continuing to follow our previcus logic. we can take the trace of this eguation to
find an evolution equation for the expansion of null geodesics,

IEH I -

- 2 e s i LY -

7 _EH — T Fwgwt — Ry kPR (F31)
Happily, this equation turns out to be completely independent of our arbitrarily
chosen auxiliary vector (. First, the expansion itsell is independent of 1%, as we
casily verify:

b = 0" By
e leﬂuu
= HMIBF e (F.32)

where the second line follows from Q%Y 0%, = 0%, and the third from k* B,,, =
k"B, = 0. (This is why we never put a hat on # to begin with,) Second, both
A ! and i@ are likewise independent of I (as you are welcome to ver-
ify), even though &, and @, themselves are not. Finally, the projection tensors
dropped out of the curvature-tensor piece when we took the trace, We therefore
have a well-defined notion of the evolution of the expansion, independent of any
arbitrary choices we made. Notice that, because &% is null, Einstein’s equation
implies

Rk kY = 8nG (T,,'. L L
= 8 G T, k" k", (F.33)

For this to be nonnegative, we need ondy invoke the Null Energy Condition, which
is the least restrictive of all the energy conditions we discussed in Chapter 3. Thus,
null geadesics tend w converge to caustics under more general circumstances than
timelike ones.

We can continue on to get evolulion equations for the shear,

D, . .
$ = =85, — 0%, 08, Crnis K%, (F.34)
di
and for the rotation,
Dy =
R (F.35)
di

These equations are less natural than the one for the expansion, since the shear
and rotation do depend on our choice of 1#; nevertheless, they can be useful in
specific circumstances,
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Conformal Transformations

A conformal transformation is essentially a local change of scale. Since dis-
tances are measured by the metric, such transformations are implemented by mul-
tiplyving the metric by a spacetime-dependent (nonvanishing) function:

Buy = w:i,t'Jg“,.. (G.1)

ar equivalently

=~ Y

P — .—uz{.r]d.rl, (G.2)

for some nonvanishing function e(x). (Here x is used o denote the collection
of spacetime coordinates %) Note that the inverse conformal transformation is
trivial: g,, = w 25, Transformations of this sort have a number of uses in
GR; our favorite purposes will be to change dvnamical variables in scalar-tensor
theories (as in Section 4.8), and 10 remap spacetimes inlo copvenient conformal
diagrams (as in the following Appendix).

We first mention one critical fact nall curves are left invariant by conformal
rransformarions. By this we mean simply that, if 1% (4) 1s a curve that is null with
respect 1o g, it will also be null with respect to g,.. This follows immediately
once we understand that a curve x#(4) is null if and only if its tangent vector
edx® fdd isnull,

dx* dx" 0 (G3
L T T e
Then in the conformally-related metric we have
dxt dx" ; dxt dxt
gy —— = (X )g,,—— =) (G4)
LT LTI i

Thus, curves that are null as defined by one metric will also be null as defined
by any conformally-related metric. We may say that “conformal transformations
leave light cones invariant.” (Indeed, you can check that they leave angles between
any two four-vectors invariant, a feature that our conformal transtormations share
with the familiar conformal transformations of complex analysis.)

Let us next consider how geometrical guantities change under conformal trans-
formanons, A conformal transformation is not a change of coordinates, but an ac-
tual change of the geometry—nmelike geodesics of g, for example, will gener-
ally differ from timelike geodesics of g,,. However, we can use conformal trans-
formations o change our dynamical variables: anything that is a function of g,
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can be equally well thought of as a function of g, and w(x). We then say that
the quantitics are expressed in the conformal frame. In this Appendix we collect
some expressions for how quantities in the oniginal metric g, are related to those
in the conformal metric g,,,.

We begin by considering the Christoffel symbols, Because the connection coef-
ficients are linear in derivatives of the metric and also linear in the inverse metric,
the conformally-transformed connection takes the form

rﬁt' = rﬁr + € . (G.5)
Oy is clearly a tensor, as it is the difference of two connections, An explicit
caleulation reveals it to be given by

Cla = &7} I:E::V,.w + 80V 0 — gﬂ.,,g"""v;.,w] ((3.6)
This formula immediately becomes useful when we consider how the Riemann
tensor behaves under conformal transformations. In fact under any change of con-
nection of the form (G.5), we have
RP.’”:L' — R.l'!a:“_ -t vﬂ{wlba - 1\-':rl.'c"ﬂ;u‘l' + Cﬂlﬂlc;‘.rﬁ' - (‘P\'JLCJ';:H- fG?}
Thus it is a matter of simply plugging in and grinding away to get
fu*vl¥o

!_E"’,m,. = RPauv —2 (ﬁ'ﬁ SUgR gq|,45f.']g”ﬂ) W I{Vuvﬂul}

+2 (280, 8588 — 28014858 + 8a1udl 8™ ) @ 2 (Vgw)(Vpo).

(G.8)
Contracting the first and third indices vields the Ricei tensor,
Rov = Roy = [(n — 28958 + g0ug™®] 0™ (VaVpw)

+ [2(n — 2)8288 — (1 — B)gorg™ | @ (Vew)(Vpw),  (G.9)

where 2 is the number of dimensions. Raising an index (with 4" = ™ ?g#") and
contracting again gets us the curvature scalar,

R=wiR—2n- ]}g“‘l‘ry's{‘ﬁ?ﬁ,vﬁcu} —(n—1)n — 4]3*’ﬁw_:t‘?"&cull'¢?ﬂmj.
(G0

Another useful quantity is the covariant derivative of a scalar field ¢, The first
covariant derivative is equal in the original or conformal frame, since they are

bath equal to the partial derivative:

Vit = Vi = 0,0 (G.11)
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The second derivative, however, invelves the Christoffel symbol, and therefore
has a nontrivial transformation:

ViVop = V, Vb — (8567 + 8087 — guve™ )0~ (Vo) (Vag).  (G.12)

ey "y

We can contract this with 2% (o obtain the D" Alembertian,
Cp=w "¢+ (n -0 (Vow)(Vad). (G.13)

Finally, we may want to go backward, and express guantities in the original
metric in terms of the conformal metric. This is simply a matter of wdious com-
putation, the answers to which are reproduced here for convenience. The curvature
tensor and its contractions are

R'“nf‘ g = E.ﬂlw w2 (Ernﬁ‘:flﬁfr - ‘t_:,,maﬁ'lgﬂ?ﬁ) W-l(%}ue‘;ffﬂﬁ

+ 280 (80,8 07 (Vaw) (Vge), (G.14)
Rav = Rou+ [(n — 208280 + 3005 ] 0™ (Va Vo)
- (n - I}‘s}m.g“"“m_ziﬁqw}(ﬁﬂw}. (G.15)
and
R =R +2(n- I]g?"ﬁrufﬁaﬁb-zu} —nin— ]Jé“ﬂtﬁamlfﬁﬁml, (G.16)
while the covariant derivatives of a scalar field are given by

Vo =V, Vo + (6958 + 688¢ — 3,8F) o (V) (Vag)  (GIT)

gy

and

D¢ = wt g — (n — 2P 0 (V,w) (V). (G.18)

EXERCISES

1. Show that conformal transformations leave null geodesics invariant, that 15, that the null
geodesics of gy, are the same as those of wg e (We already know that they leave null
curves invariant; you have to show that the transformed curves still are geodesics.) What
is the relationship between the affine parameters in the original and conformal metrics?

2. Show that in two dimensions, a conformal transformation can always be found (pro-
vided that the operator ¥# ¥ 15 invertible) such that the curvature of the trunsformed
metric vanishes, at least in some coordinate chart, (I can't in general be done simulta-
neously over the entire manifold,) This means that any two-dimensional metric can be
written locally as a flat metric multiplied by a conformal fuctor,

3. Suppose that two metrics are related by an overall conformal transformation of the form

fpp = i'Ul:I}ngu- lG.]g}
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fa) Show that if £ is u Killing vector for the metric g4, then it is a conformal Killing
vector for the metric ... A conformal Killing vector obeys the equation

Vubv + Vobu = (Vaedt g (G.20)

(by Show that £, 4" 1s constant along photon geodesics in g, Here k¥ is the photon's
4-momentum.

(e} Show that the conformal time g = [ &t/ Rt} is associated with a conformal Killing
vector £ = dy,

(d} Use part (¢} 1o redenve the relationship between the scale factor and redshift.



APPENDIX

Conformal Diagrams

Curved spacetime manifolds can in principle be impossibly complex; forunately,
we may often approximate physically realistic situations by manifolds with high
degrees of symmetry {especially spherical symmetry). Even symmetric space-
limes, however, can pose formidable challenges 1o our powers of visualization, if
we try to imagine the global structure of such manifolds. 1tis therefore useful 1o be
able o draw standardized representations of spacetime diagrams that caplure the
global properties and causal structure of sufficiently symmetrie spacetimes. (By
“causal structure”™ we mean the relationship between the past and future of differ-
ent events, as defined by their light cones.) An clegant fulfillment of this wish is
provided by conformal diagrams (or Carter- Penrose, or just Penrose diagrams).

A conformal diagram is simply an ordinary spacetime diagram for a metric on
which we have performed a particularly clever coordinate transformation. Since
our goal is to portray the causal structure of the spacetime, which is defined by 1ts
light cones, “clever” means that the new coordinates x* have a “timelike” coordi-
nate and a “radial” one, with the feature that radial light cones can be consistently
portraved at 437 on a spacetime diagram. In addition, we aim for coordinates in
which “infinity™ is only a finite coordinate value away, so that the structure of the
entire spacetime is immediately apparent.

As explained in the previous Appendix, conformal ransformations leave light
cones invariant. Since we would like 1o find coordinates in which light cones are al
457, we need only find coordinates in which the metric of interest is conformally
related 1o a different metnic for which we know that the light cones are at 457,
{Of course the angle at which our light cones are drawn depends on our units, or
equivalently how we draw our axes; what we really mean is a set of coordinates
I, R in which radial null rays satisfy d7/d R ==x1.)

Let's begin with Minkowski space to see how the technigue works, The Min-
kowskl metric in polar coordinates s

ds? = —di? +dr? + P22, (H.1)

where d$2% = d6* 4sin” #dg” is the melric on a unit itwo-sphere, Here it is already
true that we can draw light cones at 457 everywhere (the trajectories 1 = % are
null}, but we would like to make the causal structure of the entire spacetime more
transparent by switching to coordinates with finite ranges. Nothing unusual will
happen to the #, ¢ coordinates, but we will want to keep careful track of the ranges
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of the other two coordinates. To start with of course we have
—ag = <o, O =r < oo, (H.2)

Technically, the worldline » = 0 represents a coordinate singularity and should
be covered by a different patch, but we all know what is going on so we'll just act
fike r = 0is well-behaved.

A first guess {which turns out not o work) might be simply o rescale the
timelike and radial coordinates so that they cover a finite range. A good candidate
is to use the arctangent, portrayed in Figure H.1, and define ¢ = arctant, r =
arctan r. The metric then would take the form [using d tanx = (1/ cos?® x)d x]

A i - di? + an’ Fds?, (H.3)
cos? 1 cos*
with
- % R ;
0<F<= (H.4)

The good news is that the new coordinates have finite ranges; the bad news is that
the slope of the light cones (given by di/dF = =+ cos® 7/ cos® F) is not equal to
+1, as we wished. If we were 1o draw the appropriate spacetime diagram (which
you might want to do, just for fun), it would not be clear where null rays traveled.
especially at the edges of the spacetime.

The way out of this cul-de-sac is, instead of straightforwardly manipulating the
original coordinates r and 7, 1o be even more clever and switch to null coordinates:

W=1—1r

v=Lt+r (H.5)
arctan x
by
2

FIGURE H.l1 The arctangent maps the real line 1o a finite interval,
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I
W = constant

X

N

v = constant

FIGURE H.2 Null radial coordinates on Minkowski space.

with corresponding ranges given by
—OC S H<0Q, —00<U<00, W=y (H.6)

These coordinates are as portrayed in Figure H.2, on which each point represents
a 2-sphere of radius r = (v — «). The Minkowski metric in null coordinates is
given by

ds? = —3(dudv + dvdu) + § (v — w)?dQ?. (H.7)

Now we use the arctangent to bring infinity into a finite coordinate value, letting

I/ = arctan u
V = arctan v, {H.B)
with ranges
—nfl<lU<nf2, -af2<V<nf2, U=V (H.9)
We then have
1
- Vv ,
du dv + de du cmzycoszvﬁdﬂd‘r’—kd diy, (H.10)
and

{uvu]3={tanV—1anU]2= zV(Si“ VcosU~cosVsinU}2

cos? U cos

-2
= v =1, H.11
cos* U cos® V i ) ( )
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so that the metric (H. 7)1 1n these coordinates 1s

2 1

ds? [--zrcmdv +dVAU) +sind(V — m;mf], (H.12)

" dcos? Ucos? V

This form has a certain appeal, since the metric appears as a fairly simple
expression multiplied by an overall factor. We can make it even better by trans-
forming back o a timelike coordinate T and a radial coordinaie R, via

T=V+U R=V-=-U, (H.13)
with ranges
0<Re<m, |T|+R<m. (H.14)
Now the metric is
ds? = o XT.R) (—dTE + dR? +sin? R dn?) : (H.15)

where

w=2cosllcosV
= 2cos [%IT - R]] COs [%{T + R}l]
=cosT +cos R, {H.16)

The original Minkowski metric, which we denoted ds®, may therefore be thought
of as related by a conformal transformation to the "unphysical” metric

w3 P v
ds” = w (T, Ryds*®

= —dT? 4+ dR? 4 sin? RAD®. (H.17)

This describes the manifold R x 57, where the 3-sphere is purely spacelike, per-
fectly round, and unchanging in time, There is curvature in this metric, unlike in
Minkowski spacetime. This shouldn't bother us, since it is unphysical; the true
physical metne, obtained by a conformal transformation, is simply fat spacetime,
no matter what coordinates we choose. In fact the metric (H.17) is that of the “Ein-
stein slatic universe,” a static solution 1o Einstein’s equation with a perfect fluid
and a cosmological constant (Figure H.3). OF course, the full range of coordinates
on R x §* would usually be —ac < T' < oc, 0 = R = x, while Minkowski space
is mapped into the subspace defined by (H.14). The entire R x §* can be drawn as
a cylinder, in which cach circle of constant T represents a 3-sphere. The shaded
region represents Minkowski space. We can unroll the shaded region 1o portray
Minkowski space as a wangle, as shown in Figure H4. This is the conformal
diagram. Each point represents a two-sphere.
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FIGURE H.3 The Einstein static universe, R x §°, portrayed as a cylinder. The shaded
region is conformally related to Minkowski space.

In fact Minkowski space is only the interior of the above diagram (including
R = 0); the boundaries are not part of the original spacetime. The boundaries
are referred to as conformal infinity, and the union of the original spacetime
with conformal infinity is the conformal compactification, which is a manifold
with boundary. The structure of the conformal diagram allows us to subdivide
conformal infinity into a few different regions:

‘?-F

t = constant
r = constant

1

FIGURE H.4 The conformal diagram of Minkowski space. Light cones are at £45°
throughout the diagram.
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-

future-timelike infinity (T =, R =0)

i = spatial infinity (T =0, R=m)

Il

past tmehke infinity (7' = —7, R =10
F7 = future null infinity (T =n - R, 0 < R < 7)
$” =past null infinity (T = —r + R, 0 < R <m)

(47 and ¥~ are pronounced as “scri-plus” and “seri-minus,” respectively.) Note
that i ¥, i, and i~ are actually points, since & = 0 and R = 7 are the north
and south poles of §7, Meanwhile % and 4~ are actually null surfaces, with the
topology of R » 87

The conformal diagram for Minkowski spacetime contains & number of im-
portant features. Radial null geodesics are at £457 in the diagram. All umelike
geodesics begin at i~ and end at 7, all null geodesics begin at ¥~ and end at §7;
all spacelike geodesics both begin and end at {”, On the other hand, there can be
nongeodesic timelike curves that end at null infinity, if they become “asymptoti-
cally null.”

It 15 nice 1o be able 1o fit all of Minkowski space on a small piece of paper,
but we don’t really learn much that we didn't already know. Conformal diagrams
are more useful when we want 1o represent slightly more complicated spacetimes,
such as those Tor black holes, As discussed in Chapter 6, asymptotically flat space-
times (or regions of a spacetime) are those that share the structure of 97, {9, and
J~ with Minkowski space. Equally importantly, the conformal diagram gives us
an idea of the causal structure of the spacetime, for example, whether the past
or future light cones of two specified points intersect, In Minkowski space this is
always true [or any two points, but curved spacetimes can be more interesting, as
we saw for the case of an expanding universe in Chapter 2.

Let’s consider the conformal diagram for the cosmological spacetime intro-
duced in Chapter 2, which provides a vivid illustration of the usefulness of this
technigue. When we put polar coordinates on space, the meiric becomes

ds? = —dt® + 1% (drz g rzdﬂ*’) . (H.18)

where we have chosen to consider power-law behavior for the scale factor, a(r) =
t?, and 00 = g = L. A crucial difference between this metric and that of Minkow-
ski space is the singularity at ¢ = 0, which restricts the range of our coordinates:

D<=t =nc (H.19%
O0=r<oo (H.20)

Other than this restricted coordinate range, our analysis follows almost precisely
that of the case of flat spacetime. This is because we can bring the metric (H.18)
to the form of fat spacetime times a conformal factor; ence done, we need only
to reproduce our previous coordinate transformations 1o express our expanding-
universe metric as a conformal factor times the Einstein static universe,
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We begin by choosing a new time coordinate #, sometimes called conformal
time. which satislies

de? = r¥dy?, (H.21)
ur

np=——1'4, (H.22)

This simple choice allows us to bring out the scale factor as an overall conformal
factor,

ds? = |(1 — q)y)e/1-9 (-drﬁ +dr? +r2d9?). (H.23)
The range of i is the same as that of 1,
0=n<=o (H.24)

Note that n is a timelike coordinate [in the sense¢ that the vector o, is time-
like, ;:'.-.-'3{{!,!, iy} = O], but it does not measure the proper time of a comov-
ing clock (one with constant spatial coordinates), 1F we consider a trajectory
af(a) = (n(a), 0.0, 0), and caleulated the proper time t(r), we would find that
was equal Lo our previous time coordinate but not our new one: r oc ¢ o '/
S0 5 is a timelike coordinate, but not the time that anyone would measure, This
1s perfectly okay, and simply serves as an illustration of the independence of the
notions of observable quantities and spacetime coordinates.

Now that we have our expanding-universe meiric in the form of a confor-
mal factor times Minkowski, we can perform the same sequence of coordinate
transformations—{H.5), (H.8}, and (H.13)—where we allow # (o take the place
of ¢, These changes transform our coordinates from (5, #) 1o (T, &), where the
FANEES Are now

0=<R, 0<T, T+R<=m (H.25)
The metric (H.23) becomes
ds® =w T, R) (—::TE 4+ dR? +sin’ R dﬂe), (H.26)

where some heroie use of trigonometric identities reveals that the conformal factor
is of the form

cos T+ cos R

2sinT

2q
w(Tl, R) = ( ) {cos T +cosR). (H.27)
The precise form of the conformal factor is actually not of primary importance;
the crucial feature is that we have once again expressed our metric as a conformal
factor times that of the Einstein static universe. The important distinction between
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FIGURE H.5 Conformal diagram for a Robertson-Walker universe with a(r) o 9 for
0 = g = 1. The dashed line represents the singularity at 1 = 0 (which also corresponds 10
T =0

this case and that of flat spacetime is that the timelike coordinate ends at the singu-
larity at T = 0; otherwise the spacetime diagram is identical. We therefore have
the conformal diagram of Figure H.5, which resembles the upper half of the Min-
kowski diagram (Figure H.4). Once again, light cones appear at 45°. We see how
the conformal diagram makes the causal structure apparent; it is straightforward
to choose two events in the spacetime with the property that their past light cones
will hit the singularity before they intersect (while future light cones will always
overlap). For more complicated geometries, this convenient way of representing
a spacetime will be even more useful,



APPENDIX

The Parallel Propagator

The 1dea of parallel-ransporting & tensor along a curve 18 obviously of central
importance in GR. For a vector V¥ being transported down a path x# (), the
equation of parallel transport 15

dx* o dx# L Lo

— VW' = — 3 V' + —T,, V" =0. (1.1}

di b da
It turns oul to be possible 1o write down an explicit and general solution to this
equation; it's somewhat formal, but interesting both in ts ewn right and for its
connections to technigues in guantum field theory,

We begin by noticing that for some path y : 4 — x%(4), solving the parallel
transport equation for a vector V* amounts to finding a matrix P¥ , (4. Jq), which
relates the vector at its mital value V* (g) to its value somewhere later down the
path:

VHEGL) = PP (A, Ag) VP (k). (L2}

Of course the matnix PP, (A, Ao), known as the parallel propagator, depends on
the path ¥ (although it’s hard to find a notation that indicates this without making
v look like an index). If we define
dx”
T L ~ i ;

A plA) = _[;"J, ; (1.3)
where the quantities on the right-hand side are evaluated at x" (1), then the parallel
transport equation becomes

d

— \-"'” = AJ‘ il lI-')'“. {14}
il

Since the parallel propagator must work for any vector. substituting (1.2) into (1.4)

shows that P¥ (4, Ay) also obeys this equation:

d

PT P“J,ﬁ;‘..;'\[ﬂ — .*1‘1;, I-A}Pﬁari.l, ;;.;j'l. (1.5}
A

To solve this equation, first integrate both sides:

PYo(h, ko) = 8 + f Ao (n)P? 4(n, do)dy. (1.6)
b

o]
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The Kronecker delta, it is easy to see, provides the correct normalization for
A= Ao

We can solve (1.6) by iteration, taking the right-hand side and plugging it into
itself repeatedly, giving

A

A 7
PFF{A,:‘-{]} =3£ +£ A“p{n}dﬂ+ ,[1 A”a(?ﬂ-‘iapfﬂa}d??fdﬂ*'“‘-
] 0

A
(1.7}

The nth term in this series is an integral over an n-dimensional right triangle, or
n-simplex:

f Almidm
A0

Lo
f f A(n2) Al dmdnz
A ¥ A

Aopny pm2 3
ff f A(m)A(GR)A(n) d7n.
Ay Yhg YAp

See Figure L 1.

It would simplify things if we could consider such an integral to be over an
n-cube instead of an n-simplex. Is there some way to do this? There are n! such
simplices in each cube, so we would have to multiply by 1/n! to compensate for
this extra volume. But we also wani to get the integrand right; using matrix no-
tation, the integrand at nth order is A(n,)A (7a—1) - -+ A(n1 ). but with the special
property that n, = na—y = -+ = ni. We therefore define the path-ordering
symbol, P, to ensure that this condition holds. In other words, the expression

PlA(n)A(Ma-1) - -- A(m)] (1.8)

stands for the product of the n matrices A(n;), ordered in such a way that the
largest value of n; is on the left, and each subsequent value of n; is less than or

m

™

FIGURE I.1 n-simplices (n-dimensional right triangles) form =1, 2, 3.
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equal to the previous one. We then can express the nth-order term in (1.7) as

A fin nz
f j. f -“-lTIarJAETJn—H"‘AUHJIFFFJ‘
Ao Jap A

| A ~ A .
= mf f [ PlA(s ) A (-1} -+ Al )] d" 7. (L9}
+ .a'\.“ .a'\(. A

This expression contains no substantive statement about the matrices Al b il is
Just notation, But we can now write (L.7) in matrix form as

Fil,.ip)=1+ E _lf PLAM A T—1) - Al ) ™. (L1
ol i A

This formula s just the series expression for an exponential; we therefore say that
the parallel propagator is given by the path-ordered exponential

PEA,lu]:'Pexp(f Atr;.'m’rj). (L11)

where once again this is just notation; the path-ordered exponential s defined o
be the right-hand side of (1.10), We can write it more explicitly as

- dx®
P“,il.im:?’cxp(—[ 1'#..;” c.‘r,r). (1.12)

It's nice 0 have an exphieit formula, even if it 1s rather abstract. The same kind of
expression appears in quantum field theory as “Dyson’s Formula,” where it arises
because the Schridinger equation for the time-evolution operator has the same
form as (1.3,

An especially interesting example of the parallel propagator occurs when the
path is a loop, starting and ending at the same point. Then if the connection is
metric-compatible, the resulting matrix will just be a Lorentz transformation on
the tangent space at the point. This transformation is known as the “holonomy™
of the loop. If yvou know the holonomy of every possible loop. that turns out to
be equivalent to knowing the metric. One can then examine general relativity in
the “loop representation,” where the fundamental variables are holonomies rather
than the explicit metric. A program called “loop quantum gravity™ attempts to di-
rectly quaniize general relativity in these variables (as opposed o something like
string theory, in which GR falls out in some limit), A great deal of mathematical
progress has been made in this direction, but fundamental obstacles remain.'

VEor a review of this approach, see C. Rovelli, “Loop quantum gravity,” Living Rev. Rel. 1, | {1998}
http: flarsiv. erg/gr-qe/ 9710008,
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Noncoordinate Bases

Early on in our study of manifolds, we made a decision 1o choose bases {or our
tangent spaces that were adapted o coordinates, For both aesthetic and pragmatic
reasons, we should consider once again the formalism of connections and cur-
vature, but this tme wsing sets of basis vectors in the tangent space that are nay
derived from any coordinate system. It will turn out that this slight change in em-
phasis reveals a different point of view on the connection and curvature, one in
which the relationship to gauge theories of particle physics is much more transpar-
ent. In fact the concepts to be introduced are very straightforward, but the subject
is a notational nightmare, so it looks more difficult than it really is.

Lintil now we have been taking advantage of the fact that a natural basis for
the tangent space 7, at a point p is given by the partial derivatives with respect to
the coordinates at that point, é.,) = d,,. Similarly, a basis for the cotangent space
I'7 1s given by the gradients of the coordinate functions, A = dyr. Nothing
stops us, however, from setting up any bases we like, Let us therefore imagine
that at cach point in the manifold we introduce a set of basis vectors €, (indexed
by a Latin letter rather than Greek, 1o remind us that they are not related to any
coordinate svstem). We will choose these basis vectors (o be "orthonormal . in a
sense that is appropriate to the signature of the manifold on which we are working.
That is, if the canonical form of the metric is written 1,4, we demand that the inner
product ol our basis vectors be

.?‘Emnfj(hl:' = Mk (1.1}

where g{ . } is the usual metric tensor. Thus, in a Lorentzian spacetime g5 rep-
resents the Minkowski metric, while in a space with positive-definite metric it
would represent the Euclidean metrie. The set of vectors comprising an orthonor-
mal basis 15 sometimes known as a tetrad (from Greek terras, “a group of four™)
or vielbein (from the German for “many lees™). In different numbers of dimen-
stons it occasionally becomes a vierbein (four), dreibein (hree), sweibein (two),
and so on. Just as we cannot in general find coordinate charts that cover the entire
manifold, we will often not be able to find a single set of smoath basis vector fields
that are defined everywhere. As usual, we can overcome this problem by working
in different patches and making sure things are well-behaved on the overlaps,
The point of having a basis i1s that any vector can be expressed as a linear
combination of basis vectors, Specifically, we can express our old basis vectors
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£(uy = d, in terms of the new ones:
éGny = € Ea. (1.2

The components €,” form an n x n invertible matrix. (In accord with our usual
practice of blurring the distinction between objects and their components, we will
refer to the e, as the tetrad or vielbein, and often in the plural as “vielbeins.)
We denote their inverse by switching indices to obtain ¢, which satsfy

1

i i i
aty = ﬁ: .

€ e ety =8, (1.3}
These serve as the components of the vectors ég,; in the coordinate basis:
&ay =¥ gé 0. (1.4)
In terms of the inverse vielbeins, (1.1) becomes
guve” i’y = Nap, (1.5)
or equivalently

Buv Zﬁ'uufubﬁub (1.6)

This last equation sometimes leads people to say that the vielbeins are the “square
root” of the metric,

We can similarly set up an orthonormal basis of one-forms in T, which we
denote A9, They may be chosen to be compatible with the basis vectors, in the
sense that

6 (@) = 5. (1.7)

An immediate consequence is that the orthonormal one-forms are related to their
coordinate-based cousins %) = dy# by

glel — e'“"ﬁ“” (1.8)
and
Alay E,“uijuﬂ‘ (J.9)

The vielbeins ¢,” thus serve double duty as the components of the coordinate
basis vectors in terms of the orthonormal basis vectors, and as components of the
orthonormal basis one-forms in terms of the coordinate basis one-forms; while
the inverse vielbeins serve as the components of the orthonormal basis vectors
in terms of the coordinate basis, and as components of the coordinate basis one-
forms in terms of the orthonormal basis,
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Any other vector can be expressed in terms of its components in the orthonor-
mal basis. If a vector V is written in the coordinate basis as V#é,, and in the
orthonormal basis as Ve, the sets of components will be related by

Vo =6, °VH, (1.10)

So the vielbeins allow us to “swilch from Latin to Greek indices and back” The
nice property of tensors, that there is usually only one sensible thing 1o do based
on index placement, 15 of great help here. We can go on to refer to multi-index
tensors in either basis, or even in terms of mixed components;

V“h =4 l."“a V“ = :E‘.'I'Ij, V“.__, — -f:'“'*{’rh if"“ P (111}

Looking back at (1.5), we see that the components of the metric tensor in the or-
thonormal basis are just those of the Nat metric, . (For this reason the Greek
indices are sometimes referred 1o as “curved”™ and the Latin ones as “lat.”™) In [act
we can go so far as to raise and lower the Lann indices using the flat metric and its
inverse %%, You can check for yourself that everything works (for example, that
the lowering an index with the metric commutes with changing from orthonor-
mal to coordinate bases). In particular, our definition of the inverse vielbeins is
consisient with our usual notion of raising and lowering indices,

' h
&%y = 2" nape,”. (J.12)

We have introduced the vielbeins ¢,% as components of a set of basis vectors,
evaluated in a different basis, This is equivalent to thinking of them as the com-
ponents of a (1, 1) tensor,

e=e dx" @ E.rdj. (J.13)

But this 1s actually a tensor we already know and love: the identity map. If we act
this tensor on a vector, we get back the same vector, just in a different basis; that's
the content of (1.10). Likewise, if we use the inverse vielbein ef 1o convert the
Latin index on e, 10 a Greek index, according to (1L.3) we get the Kronecker delta
&1, which of course 1s the identity map on vectors (or one-forms). This point 15
worth emphasizing because we could also choose to interpret ¢, % as a set of vector
components (and some references do so), In which case the covariant derivative
would look different. By introducing a new set of basis vectors and one-forms,
we pecessitate a return to our favorite topic of ransformation properties. We've
been careful all along to cmphasize that the tensor transformation law was only
an indirect outcome of a coordinate transformation; the real 1ssue was a change
ot basis. Now that we have noncoordinate bases, these bases can be changed in-
dependently of the coordinates, The only restriction is that the orthonormality
property (1.1} be preserved. But we Know what Kind of transformations preserve
the Aal metric—in a Euclidean signature metric they are orthogonal transforma-
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tions, while in a Lorentzian signature metric they are Lorentz transformations. We
therefore consider changes of basis of the form

Etay = € = AV (X )8, (J.14)

where the matrices A%, (v) represent position-dependent transformations which
(at cach point) leave the canonical form of the metric unaliered:

ﬁdﬂfh“j;,»rj'ﬂh = Tg'h's (J.15)

In fact these matrices correspond to what in flat space we called the inverse
Lorentz wansformations (which operate on basis vectors); as before we also have
ordinary Lorentz wransformations A7 . which transform the basis one-forms. As
far as components are concerned, as before we transform upper indices with A%,
and lower indices with AY .

S¢ we now have the freedom to perform a Loerentz transformation (or an or-
dinary Euclidean rotation, depending on the signature) at every point in space.
These transformations are therefore called local Lorentz transformations, or
LLT's. We still have our usual freedom to make changes in coordinates, which
are called general coordinate transformations, or GCT's. Both can happen al
the same time, resulting in 2 mixed tensor ranstormation law:,

. - .-_ l-':f ‘..
Tu = By = :"'L“ aT— A B 'r'—_j—.Tu“.'ur- “Iﬁ'}
fdat

Translating what we know aboul tensors into noncoordinate bases is for the
most part merely a matter of sticking vielbeins in the right places. The crucial
exception comes when we begin to differentiate things. In our ordinary formalism,
the covariant derivative of a lensor is given by its partial dertvative plus correction
terms, one for each index, involving the tensor and the connection coefficients,
The same procedure will continue o be true for the noncoordinate basis, but we
replace the ordinary connection coefhicients I‘il by the spin connection, denoted
), “y. Each Latin index gets a factor of the spin connection in the usual way:

'G‘H X = HHXH,}, = ru““,_-xt b—- :ul-,r',i. X2, (17

(The name “spin connection” comes from the fact that this can be used to tuke co-
variant derivatives of spinors, which is actually impossible using the conventional
connection coefficients.) In the presence of mixed Latin and Greek indices we get
termns of both kinds.

The vsual demand that a tensor be independent of the way it is written allows
us to derive a relationship between the spin connection, the vielbeins, and the
", s, Consider the covariant derivative of a vector X, first in a purely coordinate

fei

basis:
X = (V,X")dx* @ 2,
= (@, X"+ Y, X )de ® 8, (1.18)
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Mow find the same object in a mixed basis, and convert into the coordinate basis;
VX = (Vp X"dx" @&
= [dy X funuh-xh}dlﬂ ® ﬂz’i.r]

(8, (e, X") + wu""'a.{f;,hxl_‘m.r“ & (e ,95)

= g” H{'EL'J'HH X'+ x¥ 'E‘I.u'?!lf{J + mu”hfi. II’X‘L}‘-U @0,
= (A X" + E."LI“HJI(';\“X}' - e"ae;khwy"h)(""}{ir" ® do. iJ.19)

Comparison with (J.18) reveals

].‘:;,h e f'=lu”:-: ex” +e% f}.hmuub (3.20)
or equivalently
ey = e ey, — eMpiue”, (J.21)

A bit of manipulation allows us to write this relation as the vanishing ol the co-
variant derivative of the vielbein,

T a 0oL ~d : 1 b
V;:!’-’I.' = ey — IL,-*-'J.{ ___m“c bEu

=, (1.22)

L

which is sometimes known as the “tetrad postulate” Note that this is always true;
we did not need to assume anything about the connection in order to derive it
Specilically, we did not need to assume that the connection was meiric compatible
or torsion free, We did, however, implicitly take % to represent the (1, 1) tensor
(1.13% since this tensor is the identity map, it 15 no surprise that its covariant
derivative vanishes, (Not all references have this philosophy, so be careful.)

Singe the connection may be thought of as something we need to introduce in
order to fix up the transformation law of the covariant derivative, it should come
as no surprise that the spin connection does not itsell obey the tensor transfor-
mation law, Actually, under GCT's the one lower Greek index does transform in
the right way, as a one-form. But under LLT's the spin connection transforms
inhomogeneosusly, as

a \ I J ; 4 5
ek " b= A? adh Jh'w;:qh - ﬂ-{h"ju AT It ”-23‘}

You are encouraged 1o check Tor yourself that this results in the proper transtor-
mation of the covariant derivative,

So far we have done nothing but empty Tormalism, translating things we al-
ready knew into a new notation. But the work we are doing does buy us two things,
The first, which we already alluded 1o, 15 the ability 1o describe spinor fields on
spacetime and take their covariant derivatives: we won't explore this further here.
The second is a change in viewpoint, in which we can think of various tensors
as tensor-valued differential forms, For example, an object like X %, which we
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think of as a (1, 1) tensor written with mixed indices, can also be thought of as
a “vector-valued one-form.” It has one lower Greek index, so we think of it as a
one-form, but for each value of the lower index it is a vector, Similarly a tensor
Ay s, antisymmetric in g and v, can be thought of as a “(1, 1)-tensor-valued
two-form.” Thus, any tensor with some number of antisymmetric lower Greek in-
dices and some number of Latin indices can be thought of as a differenial form,
but taking values in the tensor bundle. (Ordinary differential forms are simply
scalar-valued forms.) The usefulness of this viewpoint comes when we consider
exterior derivatives. If we want to think of X% as a vector-valued one-form, we
are tempted o ke s exrerior denvative:

@X) e = . X% — 0%, 1. (].24)

It is easy to check that this object ransforms like a two-form [that is, according
to the transformation law for (0, 2) tensors] under GCT s, but not as a vector un-
der LLTs {the Lorentz transformations depend on position, which introduces an
inhomogeneous term inte the transformation law). But we can fix this by judi-
cious use of the spin connection, which can be thought of as a ene-form, but not a
tensor-valued one-form, due 1o the nontensorial transformation law (1.23). Thus,
the object

(dX ]‘;rl.'“ + (e A X:Il[.tl'u = H:.'X‘.?JJ - d, Xu” b - fﬂpuilxuk = ‘Hﬁ'“hxuh- (1.25)

as you can verify, transforms as a proper lensor.

An immediate application of this formalism is (o the expressions for the torsion
and curvature, the two tensors that characterize any given connection. The torsion,
with two antisymmetric lower indices. can be thought of as a vector-valued two-
form T,.“, The curvature, which is always antisymmetric in its last two indices,
is a (1, 1)-tensor-valued two-form, By, Using our freedom 1o suppress indices
on differential forms, we can express these in terms of the basis one-lorms

g% =g, da” (1.26)

and the spin-connection one-forms
ey = ey pdxt, (.1.27)
Notice that we have switched notations, defining ¢% = '), This is fairly conven-
tional, as well as cleaner. The defining relations for the torsion and curvature are

then
= & -

TE=de® + ) A e {1.28)

and

R%y = de®, + o s ety (J.29)
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Keep in mind that R, represents the entire Riemann tensor, with Greek indices
suppressed; don’t confuse it with the Ricei tensor. These are known as the Cartan
structure equations. They are eguivalent 1o the usual definitions; let's go through
the exercise of showing this for the torsion, and you can check the curvature for
yourself, We have

v A a
Lo =e"qTuy
L i y i 4 B
= ¢*ldyey” — hey® +w,pey” — w"pe,”)

<A X

ZIJ:I'_ rl.lJ' (J.30)
which is just the original definition we gave. Here we have used (1,203, the ex-
pression for the I'f; s in terms of the vielbeins and spin connection, We can also

express identities obeyed by these tensors as

dT% + 6% A T? = B9, A e” (J.31)

and
dR% +w ARy — R nwfy =10, (J.32)
The first of these is the generalization of 8?5, = 0, while the second is the

Bianchi identity Vi; | R* 51,0 = 0. (Sometimes both equations are called Bianchi
identities. )

The form of these expressions leads o an almost irresistible emptation to de-
fine a “covariani-cxterior derivative.” which acts on a tensor-valued form by tak-
ing the ordinary exterior derivative and then adding appropriate terms with the
spin connection, one for each Latin index. Although we won't do that here, it is
okay to give i to this temptation, and in fact the right-hand side of (1.28) and
the lefi-hand sides of (J.31) and (J.32) can be thought of as just such covariant-
exterior derivatives, But be careful, since (J.29) cannot be; you can’t take any sort
of covariant derivative of the spin connection, since it's not a lensor,

So far our equations have been true for general connections; let’s see what we
get for the Christoffel connection, The lorsion-free requirement is just that (J.28)
vanish: this does not lead immediately to any simple statement about the coeffi-
cients of the spin connection. Metric compatibility is expressed as the vanishing
of the covariant derivative of the metric: Vg = 0. We can see what this leads to
when we express the metric in the orthonormal basis, where its components are
simply 7jap:

’ . : i
Vitlap = e Nap — WJJL afleh = Wy bija

= =wWuh — Wuba (J.33)
Then setting this equal to zero implies

hygh = —thihg. 1.34)
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Thus, metric compatibility is equivalent to the antisymmetry of the spin connec-
tion in its Latin indices. (As before, such a statement 15 only sensible 1f both
indices are either upstairs or downstairs.) These two conditions together allow us
to express the spin connection in terms of the vielbeins, An explicit formula ex-
presses this solution, but in practice it is casier o simply solve the torsion-free
condition

A e = —def, (1.35)

using the asymmetry of the spin connection, to find the individual components.

One of the best reasons for thinking about noncoordinate bases is that they
actually lead to great simplifications in certain cases, including the calculation of
the curvature tensor, Let's see how this works in a simple example, a spatially fla
expanding universe, with metric

ds* = —dt* + ﬂ:{r}&-}-;h"d.r". {1.36)

We will use the differential-forms notaton of (1.26) and (1.27); caleulations such
as this are good evidence that this language is practically usetul as well as elegant.
The metric is thus written (for any geometry)

dy? = Nape” @ of (1.37)

We need 1o choose basis one-forms ¢ such that this matches our metric (J.36).
There are many choices (related by local Lorentz transformations), but one obvi-
DUS ONe:

e =dt

el =adx'. (J.38)
We would now like to solve for the spin connection using (1.35), The zood news
is that we basically can do 1t by guessing. First, by appropriately raising and low-

ering indices (with 7t and Nab) we derive the consequences of the antisymmeiry
of euypt

wly =0
w’ = wly
o' j==w . (1.39)

We next caleulate the right-hand side of (J.35),

de' =0
de' = da » dx’ = adr » da', iJ1.40)
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and then the left,

b ] '
Wy rne=w et = e’ j A dat

w'y A =wone® + m‘-J. nel = wonadt+a';n dyt. (141
Plugging into {J.33) yields
aj Adx! =0
aondt+ o' Ade) = —adr Ady', (J.42)

We would like to solve these equations for «%, It is templing to guess w”'_,- =1
but then to solve the second equation we would require ' | = —déj dr. which is

incompatible with ' ; = —e { from (1.39). But we can solve the first equation by
setting " ; proportional to de/ (due to the antisymmetry of the wedge product).
Indeed, if we choose

m“j =adx!, @'y = adx', (1.43)
we find that both equations in (J.42) are solved by setting
o =0. (1.44)
Now that we know the spin connection, we can casily get the curvature through
Ry = de'™p + . 2w, (.45
We first calculate the exterior derivative of the spin connection forms,
de'q = éidr A dx’
dmﬂ_,- = gdr A dx/
dwrj- =, (].46)
and then the wedge products,
w"‘ Aap=0D
ru‘,: M rﬂ{'n =0
@ e A afj= atdat A do . (J47)
We therefore obtain the curvature two-form,
RY% =0
RV = iide A dx/
R'q = ddt A dx'
Ry =a"dx' adx. (J.48)



492

Appendix | Noncoordinate Bases

For purposes of comparison, we can use vielbeins w convert R, to our con-
ventional expression /7, .., using
b

R"nur = fﬂu"'n Rﬂh:w- [349]

In component form the vielbeins (1,38} and their inverse are
l |
i ’ .
8% = L 4 ; (1.50})

a i
1

o i

We will also need 1o evaluate the components of the wedge products of basis
forms, which is straightforward enough,

(dx® A dxf )y, = 8288 — 8260, (J.51)
Putting it all together vields the components R, .

R”;‘m = add

; i
R'oeo = ——4&}
il

R jut = (8581 — 816 ,x), (1.52)

as well as ones obtained by antisymumeltry in the last two indices, We may contract
to get the components of the Ricei tensor Ry = R0,

5
Rop = =3~
i
Rr“ = {]
Rij = (ai + 24%)8;;. (J.53)

You can check that this agrees with our results from Chapter 8. Already in
this simple example, the tetrad method was computationally simpler than the
coordinate-basis method: in more complicated metrics the comparative advan-
Lage continues o grow.

In the language of noncoordinate bases, it is possible to compare the formalism
of connections and curvature in Riemannian geometry to that of gauge theories
in particle physics. In both situations, the fields of interest live in veclor spaces
that are assigned to each point in spacetime. In Riemannian geometry the vec-
tor spaces include the tangent space, the cotangent space, and the higher tensor
spaces constructed from these. In gauge theories, on the other hand, we are con-
cerned with “internal™ vector spaces. The distinetion is that the tangent space and
its relatives are intimately associated with the manifold itself, and are naturally de-
fined once the manitold is set up: the tangent space, for example, can be thought
of as the space of directional derivatives at a point. In conlrast, an internal vector
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space can be of any dimension we like, and has o be defined as an independem
addition to the manifold. In math jargon, the union of the base manifold with the
internal vector spaces (defined at cach point) is a fiber bundle, and each copy of
the vector space is called the “fiber” (in accord with our definition of the tangent
bundle).

Besides the base manifold (for us, spacetime) and the fibers, the other impor-
tant ingredient in the definition of a {iber bundle is the “structure group,” a Lie
group that acts on the fibers to describe how they are sewn together on overlap-
ping coordinate patches. Without going into details, the structure group for the
tangent bundle in a four-dimensional spacetime is generally GL(4, R}, the group
of real invertible 4 = 4 matrices; if we have a Lorentzian metrie, this may be re-
duced to the Lorentz group SO(3, 1), Now imagine that we introduce an internal
three-dimensional vector space, and sew the fibers together with ordinary rota-
tions; the structure group of this new bundle is then SO(3). A field that lives in
this bundle might be denoted ¢ (x*), where A runs from one to three: it is a
three-vector (an internal one, unrelated to spacetime) for cach point on the man-
ifold. We have freedom to choose the basis in the fibers in any way we wish;
this means that “physical quantities” should be left invariant under local SO{3)
transformations such as

A (xh) — ¢t () = 0 ()M (1), (1.54)

where (}”',1,1_1'“} is a matrix in SC{3) that depends on spacetime. Such transfor-
mations are known as gauge transformations, and theories invariant under them
are called “gauge theories.”

For the most part it is not hard to arrange things such that physical quan-
tities are invariant under gauge transformations. The one difficulty arises when
we consider partial derivatives, 1, ¢, Because the matrix 04 4 (x*) depends on
spacetime, it will contribute an unwanted term to the ransformation of the partial
derivative, By now you should be able to guess the solution: introduce 4 connee-
tiop o correct for the inhomegeneous term in the transformation law. We therefore
define a connection on the fiber bundle to be an object A, * g, with two “group in-
dices” and one spacetime index. Under GCT's it transforms as a one-form, while
under gauge transformations it transforms as

AV p =0V 084,15 - 0%p0,0%. (1.55)

(Beware: our conventions are different from those in the particle physics litera-
ture,) With this transformation law, the “gauge covariant derivative”

D¢t = 8,0 + A, po® (1.56)

transforms “tensorially” under gavge transformations, as you are welcome to
check. [In ordinary electromagnetism the connection is just the conventional vec-
tor potential. No indices are necessary, because the structure group UCL) 15 one-
dimensional. ]
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It is clear that this notion of a connection on an internal fiber bundle is
very closely related 1o the connection on the tangent bundle, especially in the
orthonormal-frame picture we have been discussing. The transformation law
(1.55), for example, is exactly the same as the wansformation law (1.23} for the
spin connection, We can also define a curvature or “field strength” tensor which
15 a two-lTorm

FAg=dAt g+ AYc ~ A, (1.57)

in exact correspondence with (.29}, We can parallel ransport things along paths,
and there is a construction analogous (o the parallel propagator: the trace of the
malrix obtained by parallel transporting a vector around a closed curve is called a
“Wilson loop.”

We could go on in the development of the relationship between the tangent
bundle and internal veetor bundies, but that would be another book. Let us instead
finish by emphasizing the important difference between the two constructions,
The difference stems from the fact that the tangent bundle 15 closely related to
the base manifold, while other fiber bundles are tacked on after the fact. It makes
sense 1o say that a vector in the tangent space at p “points along a path” through
jr: but this makes no sense for an internal vector bundle. There 1s therefore no
analogue of the coordinate basis for an internal space—partial derivatives along
curves have nothing to do with internal vectors, Tt fellows in turn that there is
nothing like the vielbeins, which relate orthonormal bases to coordinate bases.
The torsion tensor, in particular, 15 only defined for a connection on the tangent
bundle, not for any gauge theory connections; it can be thought of as the covariant
exterior derivative of the vielbein, and no such construction is available on an
imternal bundle. You should appreciate the relationship between the different uses
of the notion of a connection, without getting carried away.

EXERCISES

1. In (1370 we mention that the metnic in 2n orthonormal basis can be written
i-ir.‘;".E = fﬂuhf'” @ E’b. u-ﬂsj
How can this possibly be? If the components of the metric are ngp everywhere, how
can we know what the geometry 157

2. Caleulate the connection one-forms, curvature two-forms, and hence the components
of the Riemann tensor for the Mixmaster universe. The metric is given by
= P 2 | 2 2 2 t:
ds = —dr @ dt + @ rsl Ba -.-ﬁz-:'.r Ba+y fr-F{gm' A
Here e, #. y are functions of r only and the one-forms o are given by
!

o' = cos W A8 <+ sind sin @ dey
&% = sin i df — cos i sinf deb
gt = difr 4+ cosd dep.
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Affine parameter, 109
Angle
deflection, 352
Einstein, 351
Angular diameter distance,
345349
Angular separation, gravitational
lensing, 351
Angular velocity, rotating black
holes, 266
Annihilation/creation operators,
383, 397
Annihilator, set of forms, 441
Anthropic principle, 339
Ant-de Sirer space, 326-328. 335
Antimatter, 363
Area theorem, event honizons,
243-244
AnUSymmenric wnsors, 26
Antisymmetry
manifolds, integration, S8-89
product of Kronecker deltas,
Ei-84d
of Riemann tensor, 126-127

Index

Square brackets, 27
Asvmptotic latness, 197, 249-253
Axions, 359

Baryonic matter, 358, 364-365
Basis modes, 397
Basis vectors, 1617, 74, 483
BEN. See Big Bang
Nucleosynthesis
Bekenstein generalized second
law, 272
Bell, Jocelyn, 235
Bianchi identity, 128-129
Big Bang
described, 76, 340
heavier elements and, 364
leftover radiation, 356
singularity, 76, 340
Big Bang Nucleosynthesis (BBN),
363
Binary pulsar, 218
Birkhoff*s theorem, 197-204
Black holes
charged (Reissner-Nordstrim),
254261
creation of, 230, 234
described, 238-239
entropy, 271, 417
event horizons, 203, 222,
230-244
Hawking temperature, 376, 414,
416
Kiiling honzons, 244244
mass balanced by charge, 259
miass, churge, and spin, 248-254
parameters, propotionality 1o
thermodynamics, 416417
radiation from, 412421

rotating (Kerr), 244, 261-267
Schwarzschild solution, 193,
218-222, 229-236
supermassive, evolution of, 320
thermodynamics and Penrose
process, 267-272
Bogoluboy transformations,
FUR-399_ 408
Boosts, 12
Boulware vacuum, 414415
Boundary
black hole, 239
manifold with, 451-452
of region and, 421
Stokes's Theorem, 455
Boyer=Lindguist coordinates,
262
Brightness, source, 354
Buchdahl's theorem, 234

Canenical commutation relations,
381, 389, 395
Cartan structure eguations,
48R-4H9
Carter-Fenrose diagrams. See
conformal diagrams
Cauchy honizon, 79-81
Cauchy surface
causality, 80
entropy, black hole, 418
Causality
achronal, 79
Cauchy horizon, 30-81
chronological future, 79
curve, defining, 79
future, 7980
initial-value problems, 78
light cones, 4-5,9

5M
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Causality (continued)
Misner space, §1
partial Cauchy surface, 80
singularities, 81-82
CDM (cold dark matter), 359
Chain rule, 62, 64-65, 152
Chandrasekhar limit, 235, 355
Charge density, 305
Charged black hales, See
Reissner—Mordstrm black
holes
Christoffel connection, 99100,
101, 108, 489
Christoffe] symbol
conformal transformation,
468469
defined, 93, 99
expanding-universe metric,
calculating, 113-115
vamshing, Riemann tensor and,
126
Chronological future, 79
Circular orbits, 305
Classical field theory
action, 37-38, 159
curved spacetime, 159-160
d" Alembertian, 41, 160, 360
effective field theory, 45, 180,
189
energy-momentum tensor, 44,
164—-163
Buler—Laprange equations, 37,
30,40, 160
gauge invarance and
transformation, 42
Klein-Giordon equation, 42
Lagrange density, 38, 4445,
159-160
natural units, 38
scalar field, 40, 160, 164, 360,
364
surface term, converting by
Stokes's thecrem, 39=40
vector petennial, 4243
Clocks, synchronizing, 7
Closed universe, 330, 337, 343
Closed forms, 85, 441442
Closed timelike curves, 80-E1,
266

Incdex

CMB, See Cozmic Microwave
Background
Codazzi's eguation, 451
Codimension, 439
Coincidence problem, 359
“Comma-Goes-to-Semicelon™
rule, 152
Commutator, vector, 67
Comoving coordinates, 329
Compactification, conformal,
475-476
Components
dual vector, 19, A8-69
noneoordinate basis, 483486
vectorn, 17, 65-66
tensor, 21-22, 69
Cones, tight. See light cones
Conformal coupling, 395
Contormal diagrams
anti de Sitter, 327
asymptotically flat, 240
collapsing star, 230
de Siuer, 325
defined, 471478
evaporating black hole, 419
Kerr, 265
Minkowski, 473
Reissner-Nordstrdm, 257-259
Rohertson-Walker, 478
Schwarzschild, 229
Conformal frame, 468
Conformal infinity, 475-476
Conformal tensor. See Wevl tensor
Conformal transformations,
467460
Congruence, 459-463
Conjugate momentum, 395
Connection
covariant derivatives, 95-96,
G9-1(0
curvalure, manifesting, 93
spin, 486
torsion tensor involving,
128-129
Conservation
encrgy-momentum, law of, 35,
L18, 153
phase-space density, Liouville's
theorem of, 353

Conserved energy, 137138, 344
Continuity of a map, 58
Contraction, lensor
forming Ricer, 129
manipulating, 25
Contravariant veciors, 19
Convergence lensing potential,
352-253
Coordinate basis, 65-66
Coordinates
Boyer-Lindquist, 262
changes in, transformation law,
G667, 6%, 429430, 486
comoving, 329
Craussian normal, 445
Kruskal, 225-226
locally inertial, 74-76, 112
Riemann normal, 112-113
Schwarzschild, reducing
Boyer—Lindguist 1o, 262
spacetime, denoting, 8
iransformation, 66, 68-69,
429430
Copernican prnciple, 323
Core collapse, 319
Cosmic censorship conjecture,
243
Cosmic microwave background
(CMB)
anisotropy, 329, 337, 357-358.
365, 371-374
energy density, 356
and geometry of the universe,
337,358
gravitational waves, 320,
373-374
horizon problem, 368
isotropy, 323
polarization, 320, 373-374
recombination, 364, 368
temperature, 361, 371
Cosmological redshift, 116-117,
344--345
Cosmological constant, See
VACUUIM Energy
Cosmology
Friedmansn equation, 333-337
gravitational lensing, 349-355
inflation, 365-374



Index

maximally symmetric universes,
323-320
nonirivial Lorentzian geometry
example, 76
parallel transport, 104
redshifts and distances, 344-340
Robinson-Walker metrics,
329-333
scale factor, evolution of,
338344
universe, currently and in
distant past, 355-365
Cotangent bundle, |9
Cotangent space, 18-19
Coulomb gauge, 283
Covariant derivatives
connection coefficients, 45-96
connection, defining unigue,
98-09, 486487
curved space, 101
defiming, 94-93, U8, 486
general expression, 97
metne-compatible connection,
99100
of one-forms, 96-97
parallel transport, 105
partial derivatives, converling
to, 101-102
semicolon notation, 97
&pin connection, 486
Covanant vectors, 19
Creation/annihilation operators,
383, 389-3090, 397
Critical density, 337
Current 4-vecior, 29-30
Curvanire
Christoffel connection,
vanishing, 101
Christoftel svmbol, 93
covariant derivatives, 94-102
described, 93-94
Einstein Equivalence Principle
(EEP), 511, 15]
expanding universe, 113120
extrinsic, 449-45()
flat space versus, 103
gravity as, 1-2, 50-54,
1533-154, 156-158
hypersurface, 451

integral curves, 430

laws of physics, generalizing,
152-153

maximally symmetric spaces,
139144

notion of a straight line in
Euclicdean space. See
geodesics

open, flat, and closed, 330

parallel postulate, 144

parallel transport and geodesics,

102-10%8
Riemann tensor, 121-133
syminetries and killing vectors,
[33-139
two-form, 488489
Curvature scalar, 129=130
Curvature tensor. See Riemann
lensor
Curved spacetime
Einstein Equivalence Principle
(EEP), 53-54
gravitation, 151-155
Taylor expansion in, 107

d" Alembertian operator
conformal transformation, 469
defined, 41
Green function, 301-302

Dark ages, 363

Dark energy, 360

DEC. Sze Dominant Energy

Condition

Deceleration parameter, 337

Deflection angle, 290-292, 352

Degrees of freedom
boundary of region and, 421
effective number of relativisiic,

161
flat spacetime, 387
gravitational, 279-286

Delta function, 47, 191, 302

Density, See also energy density
root-mean-square (RMS)

fluctuation, 371
tensor, 82-54
universes, vanations in, 323
Density parameter, 337
Dependence, future domain of, 79
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D32 Sitter space
described, 324-326
positively curved maximally
symimetric spacetime, 144
vacuwmn-gominated universe,
335
Deviation, geodesic, 144
Diffeomorphisms, 59, 276-278,
429431
Differentiable manifolds. See
manifolds
Differential forms
closed, 8BS
curvalune, 488489
delined, 84
dimensionality of cohomology,
83-86
exact, B3
exterior denvative, 84-85
Hodge duality, 86, 87
Levi=Civita, 86
spin connection, 488
Lorsion, 458
vacuum Maxwell's equations,
27
vector potential, 87
wedge product, 84
Differenuation
covarant, 94-99, 486
covanant exterior, 489
exterior, 54
Lic, 4249
partial, 20, 29
Dilaton, 189, 300
Dimension, 17, 5455, 59-60
Dirac’s quantization condition, 87
Directional covariant denvative,
13
Directional derivatives, H3-64
Dominant Epergy Condition,
175177
Doppler effect, 52-53, 329
Dot product, See inner product
Dual vectors
action, 19=2{
cotangent space. 18-19
covanant/conlravanant veclors,
19
covariant derivalives, 96-97
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Dual vectors (conitnmed )
gradient of a scalar function,
a0
crthoncrmal, 484
pullback operator, 425-426
surface-forming, 441
transformation law, 20, 6869
Dummy indices, 9
Dust
matter behaving like, 119, 334
number-flux four-vector, 33-34
static gravitating forces,
modeling, 2B6-287
Dyson's Formula, 481

Eddington, Sir Arthur, 292
EEP. See Einstein Equivalence
Principle
Effective field theory, 43, 18{), 189
Effective number of relativistic
degrees of freedom, 36
Eigenstates, energy, 381382
Einstein
equation of general relativity,
See Einstemn’s equation
theory of space, time, and
gravitation. See general
relativity (GR)
view of deflection of light by
sun, 2912492
Weak Equivalence Panciple
(WEP), generalizing,
48-50
Einstein angle, 351, 352
Einstein—de Sitter model, 340
Einstein Equivalence Principle
{EEP)
curvature of spacetime and, 30
gravitational redshift, 52-53
gravity as manifestation of
curvature of spacetime,
48-54, 151-153
Einstein frame, 184189
Einstein-Hilbert action, 161, 299
Einstein radivs, 351
Einstein nng, 351
Einstein's equation
derived, 155-165, 299
properties, 164171

Inclex

perturbed, 275-276, 281285,
307-308
transverse gauge, 287
Einstein space, 328
Einstein static universe, 325-327,
344, 474475
Einstein tensor
degrees of freedom, 282-233
Riemann tensor, 130-131
Electromagnetic radiation; 315
Electromagnetism
black holes, 238-239
classical ficld theory, 42
Coulomb gauge, 283
curved spacetime, 178
energy-momentum tensar, 44,
254
field strength, 24-25
gauge invariance, 278
Maxwell's equation, 29-3()
guantum electrodynamics
(QEDL 87
Stokes's theorem, 456
tensors, differential forms,
HO-87
vector potential, 87
Electron recombination, 364
Embedded submanifold, 439
Embedding theorem, Whitney's,
66
Encrgy. See also
energy-momentum tensor
ADM energy, 252-253
eapanding universe, 120
extracting from rotating black
hole, 267-272
Komar ingegral, 249-251
loss rate in gravitational
radiation, 307-315
mass as manifestation of, 49
momentum four-vector, 31-32
positive energy theorem (Shoen
and Yau), 253
static spacetime, 137
vacuum, Seg Vacuum eneray
Energy conditions, 174177
Energy density
defined, 33-37
Friedmann equation, 338, 340

gravitational waves, 304

in matter, 119, 334-335

negative, 339-340

radiation, 119, 335

vacuum, 35, 119, 171-174, 335,
341-344, 358

Encrgy eigenstates, 381-382
Energy-momentum tensor

classical field theory, 44
conservation equation, 35,
|18, 153, 435436
defined, 33, 164-165
dust, 34
electromagnetism, 44, 254
energy density, 33-37
fluid, 33
seneralizing to curved
spacetime, 153, 164165
gravitation, 307-310
Minkowsk spacetime,
30-31
nuimber-flux four-vector,
33-34
perfect Quid, 34-37
pressure, 33
sealar field, 44
symmuetry, 13
vacuum, 35, 171-172
positive energy theorem (Shoen
and Yau), 253
statz spacetime, 137
Vacuum. See vacuum energy

Entropy, 272, 417-418
Equation-of-state parameier,

175-176, 334-335,
338-340

Equilibrium distribution function,

36l

Equivalence principle

and curved spacetime, 48-54,
151-153

Einstein (EEP), 50

gravitational redshift, 52-53

interpretation, 1 77-151

strong (SEP), 50

weak (WEP), 48-50

Ergosphere, 264, 268
Ergosurface. See stationary limit

surface
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Euclidean geometry
isometries, 139-140
maximally svmmetric space,
141143
metric, 13
metric tensor, 73
orthogonal transformations, 485
parallel postulate, 144
Euler equation, 37
Euler—Lagrange equation
classical field theory, 37, 39, 40
curved spacetime. 159160
geodesics, 107
vector potential, 42-43
Evaporation, black hole, 239,
412422
Ewvent, 4
Event honzons
area theorem (Hawking),
243-244
black holes, evaporated, 418
defined, 222, 239-240
finding, 241242
future, 241
as null hypersurface, 240-241
singularities, 242-243
Expansion
deceleration paraimeter, 337
geodesic congruence, 460, 464
Hubble parameter, 336
umiverse, example, T6-78,
113-120, 476-478,
4904492
Exponential map, 111
Exterior derivative of differential
form, 84-85
Extra dimension, 60, 181,
186--189, 374-375
Extrinsic curvature, 445450

Fermat's principle of least time,
293
Fermions, 44, 235, 361
Feynman diagrams, 166-167, 416
Fiber bundle, 16, 4934594
Field
classical, see classical field
theory
dual vector, 19

electromagnetic, see
electromagnetisim
quantum, see quantum feld
theory
scalar, 19, 40-42, 160, 164, 360,
369, 386411
tensor, 23
vector, 16
First fundamental form,
hypersurface, 449
Flat universe, 76-78, 113-120,
Flat space. See Euclidean
geometry, Minkowski
space
Fluids
cosmaological, 334
energy and momentum, 33,
437
expanding umverse metric,
[18-119
perfect, 34
Fock basis, 390-393, 196-397
Fourier fransform, 283-284,
303-304
Four-vector, See vector
Frame
conformal, 468
inertial, 6-7
locally inernal, 30-51
Freedom, degrees of. See degrees
of freedom
Free particle
geodesics, moving along,
152-153
response 1o spacetime curvalure,
2
test particles, 108
Friction, Hubble, 360-361
Friedmann equation
cosmology, 333-337
energy density, 338, 340
fatness probleny, 366
static solutions, finding, 343
Friedmann-Robertson-Walker
universes. See FRW
universes
Frobenius's theorem, 198,
440442, 245
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FRW (Friecdman-Raobertson—
Walker) universes,
336

Future, 79-80

Gauge fields, 44
Gauge invariance, 42, 276277,
493
Gauge fransformation
tield strength tensor property,
42, 300-301, 493
perturbation theory, 374-278
Gauss-Bonnet theorem, 143
Gaussian normal coordinates
hypersurfaces, 445-447
synchronous gauge as, 284
Gauss's equation, 451, 456
General coordinate
transformations, 486
General relativity (GR). See also
causality, Einstein’s
equation
as classical field theory, 37,
159165
connection on which based,
D9-1{00
described, 1-3
gravitation, 151192
Mercury's perihelion,
precession of, 291-292
spin, 253-254
symmetry and, 133-134
total energy of asymptotically
flat spacetime, 249-253
Generator
diffeomorphism, 431
hypersurface, 443444
Generie condition, 242-243
Geodesic deviation, 144-146
Geodesics
Christoffel connection, 108
congruences, 459-465
defined, 2, 105-106
equation, 106-113
Euler-Lagrange equations, 107
exponential map, 111
Gaussian normal coordinates,
445447
locally inertial coordinates, 112
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Geodesics (conrinued)

as maxima of proper time,
110-111

movement along in Kerr metric,
267

null paths, 109110

parameterization, 104

perturbed, 288-293

relative acceleration between,
145

Riemann normal coordinates,
112-113

Schwarzschild solution,
205-212

shortest-disiance definition,
106-107

singularitics in manifold,
111-112

test particle. 108, 152

timelike paths, writing equation,
1404

unchanging character, 110

Geometric time delay, 292-293
Geometry. See alse curvature

defined as deviating from
Pythagorean theorem, 2,
71-76

gravity as, 48-54

Gibbons-Hawking temperature,

I

GR. See general relativity

Gradient

exterior derivative of differential
form, 84-85
of a scalar function, 20

Gravitation. See alse general

relativity
alternative theories, 181-190
curved spacetime, 53-54,
151-158
Einstein's eguation, 155-159,
164171
energy conditions, 174-177
energy-momentuin, 307-310
equivalence principle. 177-181
Lagrangian formulation,
159-165
tocally inertial frames, 50
Newton's law of gravity, 4649

Inclex

scalar-tensor theorics,
181184
uniform acceleration,
distinguishing, 49
Grravitational collapse, 230,
234-236,415
Grravitational constant, Newton's,
151
Gravitational lensing, 34%-355
Giravitational radiation, See also
gravitational waves
energy loss rate, 307-315
perturbation theory, 274-322
Gravitational redshift, 52-53,
216=21%
Gravitational time delay, 292
Gravitational waves
Fourier transform, 303-304
gauge transformation, 300-301
Lorenz gauge, 301
metric perturpation, 3J06-307
observatory, 316-319
quadrupole moment tensor and
formula, 304-306
solutions
deseribed, 293
{requency, 295
plane wave solution, 294, 295
polurization states, 295-299
speed of light propagation,
205
string theory, clues to,
299-300
test particles, 296-208
transverse traceless gauge,
293-294
Gravity. See gravitation
Green function, 301-302

Hadamard state, 401
Half-plane geometry, 141-142
Harmeonic gauge, 284-285, 301,
321
Hurmonie osciliator
classical, 4142, 379
quantum, 381-385
Hartle-Hawking vacuum, 414
Hawking
area theorem, 243-244

effect and black hole
evaporation, 412422
event honzon of stationary
black hole, 244-245
radiation, 239, 412-422
singulanty theorems, 242
temperature, 376, 413414
Heisenberg equation of motion,
84
Heisenberg picture, 380, 383-384
Higes fields, 44
Hilbert action, 161, 299
Hilber space, 380, 390, 435
Hodge duality, 86, 87
Holographic principle, 421
Holonomy of loop, 481
Homogeneity, 323-324, 366, 369
Horizon prohlem, 366
Hubble constant, 336, 355-356
Hubble law, 346
Hubhble length, 336-337
Hubble parameter
defined, 335
expansion rale, decreasing,
339
as friction term, 360-361
slow-roll, 369-370
Hubble time, 337
Hydrostatic equilibrium, equation
of. See Tolman-
Oppenheimer—Valkoft
equation
Hypersurface
boundary of black holes, 239
congruence, 462
extrinsic curvature, 449-451
first fundamental form, 449
Gaussian normal coordinates,
45447
generator, 443444
induced metric, 427, 447
properiies, 443-452
second fundamental form, 450
Stokes’s Theorem, 455

[dentity map, 23, 96, 485

Immersed submanifold, 439

Independent components,
Riemann tensor, 127-128
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Indices
antisymmetry, 26-28
basis vectors, 17
contraction, 25, 28
dummy, 9
order, 22
orthonormal i flat), 483480
raising and lowering, 25
spatial, 8
summation convention, $-49
symmeiry, 26-28
Induced metric, submanifold, 427,
447448
Inertial coordinates. See also
locally inertial coordinates
Minkowski space, 6-8
synchronizing clocks in, 7
Inertial frame. See inertial

conrdinates
Infinite redshift surface, 247
Infinity
acceleration viewed from,
246247

anti-de Sitter space, 327-328
asvmptotic flatness, 197,
249-253
conformal, 475476
Inflation, 320, 365-374, 369, 377
Infarmation loss paradox,
418420
Initial-value problems, 78
Inner product, 23
Instantaneocus physical distance,
345
ltegral curves, 430
Integral submanifold, 440
Integration on manifolds, §8-90),
453-457
Interferometers, 31 7-318
Interval
proper time, 9
spacetime, 7
Inverse map, 58
Inverse metric tensor, 23-24, 71
Invertible map, 58
Irreducible mass of black hole,
270
lsolated magnetic charges
(monopoles), 235

Isometries, 134-139, 436437
lsotropy, 323-324, 366

Jacobian of map, 62
Jordan frame, 184

Kerr (rotating) biack holes
angular velocity, 266
Bover-Lindquist coordinates,

262
ergosphere, 264
Killing tensor, 263
metrics, 262-163
singularity, 265
symmetry, 261

Killing horizon
acceleration viewed from

infinity, 246-247
defined, 244
event horizon versus, 244-245
Minkowski space, 245,

405
stalionary, nonstatic spacetime,

247-24%
surface gravity, 245-246

Killing's equation, 136, 437

Killing tensor, 136-137, 263, 344

Killing vectors
contormal, 495
conserved enerey, 137-138, 344
defined, 135-137, 436-437
Euclidean space, 138-130
Komar integral, 251-252
maximally symmetne space,

140
Minkowski space, 149, 245, 405
Riemann tensor, relating

derivatives, 137
Schwarzschild metric, 206-208
spherical symmetry, 138-139,

49, 197-19%
spin, 253-254

Klemn bottle, &)

Klein—Gordon eguation, 42, 164,

360, 386389

Komar integral, 251-252

Kronecker delia, 23, 83-84

Kruskal coordinates and diagram,

225-226
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Lagrange density, 38, 159-160
Lagrangian formulation of GR,
159-165
Lagrangian, 37
Laser interferometers, 317-318
Latin index, orthonormal bases,
483
Leibniz rule, 67
Lens equation, 351
Lense=Thimng effect, 320
Lensing
cosmological, 349-355
Minkowskl background,
288292
potential, 352-353
strong, 355
weak, 355
Leptons, 44, 363
Levi=Civita connection. See
Christoftel connection
Levi-Civita tensor, 24, 82-83, 86,
9, 448
Lie bracket, 67, 433
Lie derivatives, 429-437
Light. See wfso null geodesics
deflection by sun, 291-292
rays, comvergence, 353
speed of, 7-8
Light cones
conformal transformations, 471
curved geometry, defining,
1677
defined, 4-5, 9
in universe expanding (rom Big
Bang singularity, 367
invariance under Lorentz
transformation, 15
Lightlike (null). 5ee Null paths,
Null separated
Linearized gravity, 274-286
Line elemem, 11, 71
Liouville's theorem, 353
Locally inertial coordinates,
73=76, 111=-113
Locally inertial frames, 50-51,
T3-74, 483486
Lookback time, 349
Loop, holonomy of, 481
Lorentz force, 32-33



508

Lorentzian or pseudo-Riemannian

metric tensor, 73

Lorents transformation

basis vectors, 18

defined, 12-13

dual vector, 20

Fock basis, 39(0-3493

inverse, 18

local, 486

tensor, 22

veclors, 17
Lorenz gauge, 284-285, 301, 321
Lununosity, 346-348, 353

Magnetic charges, isolated, 255
Magnification, 354
Magnification tensor, 353-354
Manifolds

base, union with vector spaces,

16, 493494
with boundary, 451452
causality, TA-82
charl, covering, 60-52
conformal diagrams, 471-478
curvature, describing, 72
deseribed, 3, 54-62
diffeomorphisms and lie
derivatives, 429437
differential lorms, 84-87
extra-dimensional, stee of, 189
four-dimensional Minkowski
space, 9
gravity as geometry, 48-54
integration, B8-90, 453458
maps between, 423-427
maximally symmetric space.
140144, 323-329
metric tensor, 71=-76
noncoordinate bases, 483-4495
objects that are not, 56-57
region, mapping fangent space
1o, 111
Riemann tensor, 124-125
singularities, 111-112,
204205
Stokes's Theorem, 453458
submanifalds, 439-452
Mapping
manifold, 57, 423427

Index

tangent space manifold region,
111
Mass
acceleration, according (o
Newton, |
asymptotically flat spacetime,
249-253
black holes, 248-254, 259, 270
special relativity (SR), 49-30
Matter
asymmetry, 363
dark; 359
as dust, 33, 119-120, 334
energy density, 119-120,
334-335, 338-343, 356
ordinary, 358-359
response 1o Spacetime curvature,
2
universe dominated by, 76, 134,
340, 365
Maximally extended
Schwarzschild solution,
222-229
Maximally synunetric space
Euclidean, 140
isometries, 139-140
Minkowski space., 144
Poincaré hall-plane, 141-142
Riemann tensor, 140-141, 324
spacelimes, 323-329
spheres, 140
Maxwell's equations
curved spacetime, 178
flat spacetime, 29-30
differential forms, 86-87
Mercator projection, 61
Mercury's penbelion, precession
of, 2912492
Metric
compatible connection, 99— 100
defined, &
induced, 427447
tocally inertial coordinates,
T3-74
response to energy and
momentum. See Einstein's
eguation
sign convention, 8
canonical form, 73

indefinite (Lorentzian or
pseudo-Riemannian), 73
positive (Euclidean or
Riemannian), 73
properties, T1-75
signature, 73
On TWO Vectors (inner
product), 23
Metric perturbation. See
Weak-field limit
Microlensing, 352
Milne universe, 341
Minimal-coupling principle,
152-153, 179-181, 395
Minkowski space
classical field theory, 37-45
conformal diagrams, 471-476
described, 4-11
dual vectors, 18-20
electromagnetism, 29-30)
energy and momenium, 30-37
inertial coordinates, 6-8
isometries, 134, 149, 245, 405
Killing horizon, 245, 405
Lorentz transformations, 12-15
maximally symimetri¢
spacetime, 144
point particle charge, 457
quantum feld theory, 385-394,
402412
spacetime diagram, 9
tensors, 21-29
topalogy of, 85-86
Unruh effect, 402412
vectors; 15=18
Misner space. 81
Momentum four-vector, 31-32,
109. See also
CNETZY-MOmentum lensor
Monopales, 255

Naked singularity, 243, 256-257

Natural units, 38

NEC. See Null Energy
Condition

Negatively curved universe, See
open umverse

Neurralinos, 359

Neutrinos, 363-364
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Neutron star
creation, 235
gravitational radiation from, 319
vacuum state, 413
Newton's theories
acceleration, [, 151
gravitational constant, 151
of gravity, 1, 48-49, 153-154
as limit of GR, 153154,
157-158, 286-293
Second Law, 1, 32-33
MNo-hair theorem, 238-239
Moise, gravitational-wave
observatories, 318
Nonbaryonic dark matter, 359
Nonceordinate bases, 74, 483495
Norm of a veclor, 23
n-sphere, 35
n-torus, 55
Nucleon, nuclear binding energy,
163
Nucleosynthesis, 364
Null Energy Condition, 175<176
Null hypersurface, 240-241,
244-245. 443445
Null paths
defined, 31
geodesics, 109-110
as hypersurface generstors,
443445
MNull separated, 9
Nuwmber density, 33-34, 335
Number-flux four-vector, 33-34
Mumber operator, 382-383, 390,
397, 410-411

One-forms. See dual vectors

One-to-one map, 37

Open ball/set, 539

Open universe, 330, 337, 343

Oppenheimer—Volkoff limit, 235

Ordinary matter, 358-359

Crrthogonal transformations, 13,
483

Orthogonal vectors, 23

Orthonormal basis, 483-484

Palatim formalism, 191
Parallel postulate, 144

Pagalle! propagator, 479-431
Parallel transport
deseribed, 103-104
directional covariant derivative,
105
propagator, 479481
Riemann curvature tensor, 122
straight line, 106
Partial Cauchy surface, 80
Partial denvatives
commuting, 29
covanant derivatives. converting
to, 101-102
gradhent, 20
tensors, 28, 70
Particle accelerator, 393
Particles
detecting. 398, 399
energy and momentum, 32, 47
flat spacetime, 386
in Minkowskl vacuum slate,
412
test, 108
Unruh effect, 402
Path
locus through spacetime, 4-5
of shortest possible distance.
See peodesics
veetor, moving along and
keeping constant. See
parallel transpont
Path-ordering symbaol, 450-481
Peccei={uinn symmetry, 359
Penrose
diagrams; 471-478
process for black holes,
267-272
singularity thearems, 242
Perihelion, precession of
Mercury's, 291-292
Penurbation theory
encrgy loss due to gravitation
radiation, 307-315
freedom, degrees of, 279-286
sravilational wives
detecting, 315-320
producing, 300-307
solutions, 293--30{)
inflation and, 377
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linearized gravity and gaupe
transformations, 274--278
MNewtonian limit, 153154,
157-158, 286-293
string theory, 143- 144
Phase-space density, Liouville's
conservation theorem, 353
Phatons
as component of radiation, 356
creation, 349
energy, 110
null geadestes, 109110
number density, 335
path of in static Newtoman
field, 288289
shot noise, 318
speed, 78
trajectories in perturbation
theory, 286-293
wavelength inverse o
frequency. See redshift
Planck scale, 170-171
Plane waves, 204, 205, 387-388
Poincaré
transformations, 14
half-plane, 141142
Point, individual in spacetime. See
cvem
Poim rmass
deflection angle, evaluating, 291
gravituional lensing, 351
Point particle charge, 457
Poisson equation
derived from GR, 158, 287-2%8
Einstein’s cquation superseding,
E55
Mewtonian gravity, 1, 151
Polarization
CMB, 373-374
gravitational wave solutions,
298-794
Positive energy theorem (Shoen
and Yau), 253
Positively corved universe. See
Closed universe
Preimage, 58
Pressure, See also energy-momen-
tum tensors, equation-of-
siale parameter
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Pressure {conninwed)
defined, 33-37
energy conditions, 174-177
matter (dust), 85, 234
perfect fluid, 34
radiation, 35, 335-336
in second Friedmann equation,
T |
vacuum, 35, 335-336
Principle of Equivalence.
See Equivalence
principle
Projection, Mercator, 61
Projection tensor, 36, 312,
449451, 460,
463-465
Proper motion distance, 348
Proper time
as affine parameter, 109
geodesics a5 maxima of,
106=108, 110=111
spacetime interval, 9
Protons, 358, 363-365
Pullback. 423, 425426
Pulsars, 235
Pushforward, 424425

Quadrupele moment, 304=306,
312-314
Quantum chromodynamics
(QCD), 167, 363
Quantum electrodynamics (QED),
87, 166-167
Quantum feld theory (QFT)
black holes, evaporation and
disappearance of, 239,
412-422
curved spacetime, 394402
effective held theory, 45, 180,
189
Feynman diagrams, 166-167,
416
flar spacetime, 385-394
parallel transport, 479
Unruh effect, 402-412
Quantum theory of gravity,
166-167, 170-171,
299-300, 376, 418421
Quarks, 44, 162-363

Radiation
Big Bang, leftover from,
356358
energy density, 333, 356
equation of stare, 119,
334-335
Hawking, 239, 412422
universe dominated by
components, 356
early penod, 365
expansion, 76, 340
Radion, 189
Radius
Einstein, 351
Schwarzschild, 413-414
of sphere, 132-133
Raychaudhuri’s equation, 149,
16T-168, 191=192, 375,
461462
Real vector space, 16
Recession velocity, 346
Recollapse. 342-343
Eecombination, 364, 367-368
Redshift
cosmological, 116=117,
344-349
factor, 246, 411412
gravitational, 52-54, 216-218
racdiation density, 335
Reduced lensing angle, 350
Reduced quadrupole moment,
313
Reissner-Nordstrim black holes,
254-261
Relative acceleration between
geodesics, 145
Relativity. See general relanvity,
special relativity
Ricei scalar, 129-130
Ricci tensar
conformal transformation, 468
defined, 129
maximally symmetric space,
328
tracing, 129-130
Riemann normal coordinates,
112=113
Riemann surfaces, 55-56,
143-144

Riemann tepsor
Cartan structure eguations,
JHE—4RY
characterizing curvature,
[24=-126
commutator of covariant
derivatives, 122-123
conformal transformation, 468
contraction, 129=131
defined, 122
geodesic deviation, 144
independent components,
127-128
maximally symmetric manifold,
141, 324
parallel transport around a loop,
121, 148
noncoordinate bases, 485489
relating derivatives of Killing
vectors, 137
trace-free parts, capluring (Weyl
tensor), 130
race-reversed version ol Riccl
tensor (Einstein tensor),
130131
Rindler observer, $04-405,
407-408
Rindler space, 404, 407408,
$10-411
Ring singulanty, rotating (Kerr)
Bluck holes, 265
RMS (root-mean-square) density
fluctuation, 371
Robertson—Walker metric. See
alse Cosmology
conformal diagram, 478
descnibed, 329-333
in flat universe, 746, T8, 113-120
Gauvssizn normal coordinates,
447

Rotating black holes. See Kerr

black holes
Rotations
geodesic congruence, 461, 464
invariance under (isotropy),
324
Lorentz transformation, 12
Round sphere, 132-133
Round/square brackets, 27
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Satellite gravitational-wave
observatories, 318,
319-320

Scalar field. See Field, scalar

Scalar function, 19--20, 28

Scalar product. See inner product

Scalar-tensor thearies, 181-184,
3K

Scale tactor, 7T6-78, 113-120, 329,
338-344

Schridinger proture, 380, 383-384

Schwarzschild peometry

Birkhoff's theorem, 197-204

circular orbits, 211-212

conformal diagram, 229

conserved quantities, 206-208

Eddington-Finkelstein
coordinates, 220-221

event horizon, 222, 241-242

geadesics, 205-212

gravitationul redshift, 216-21%

Killing horizon, 247-248

Killing vectors, 197-198,
203-204, 207

Kruskal (maximal) extension,
222-228

mass, 193, 196, 251-252

metric, 193-197

precession of perihelia, 213-216

Schwarzschild radius, 196, 205,
322

singularities, 204-205

surface gravity, 247-248

tormose coordinate, 220

whike hole, 227

wormhole, 227-228

Second fundamental form of
submanifolds, 450

Seisimic noise, 318

Self-adjoint operators, 380

Senucolon

*Comma-Goes-lo-Semicolon”
rule, 152
covariant denvatives, 97

SEF. See Strong Equivalence
Principle

Sel, 15-186

Shapiro time delay, 218,
292-7293

Shear
geodesic congruence, 460461,
464
eravitational lepsing, 354
Shot noise, 318
Signature metric, 73
Singularities
Big Bang, 76, 340
causality, §1-82
cosmic censorship, 243
coordinate, 204
Kerr. 264-265
in manifold (geodesically
ineomplete), 111-112
naked, 243, 256-257
Reissner-Mordstrim, 236-259
Schwarzschild, 204-205
Singularity theorems. 242-243,
176, 461462
Slow-roll parmmeters, 369-370)
S-matrix, 385
Smooth maps, 58
Spacelike separaed, Y
Spacelime
causality, 45,9, 78-82
coordinates, denoling, 8
curvaiure. See Curvature
defined, 4
dual vectors (one-forms),
18-20, 63
energy and momentum, 30-37
gravity as curvature of, 1-2,
50-54. 153-154, 156158
Lorentz transformations, [2-15
maximal symmetry, listed, 3285
Newtanian, 3-4
tensors, 21-29, 68-70
vectors, 1518, 63-67
Spacetime, curved. See Curvature,
General relativity,
Spacetime
Spacetime interval, 7
Spacetime diagram, 9
Special relativity (SR)
acceleration, 11
background, 1-3
described, 3-11
energy and momentum, 30-37
inertial frame, 6-7

a2l

Minkowski space, 8
Speed of light. See Light, speed of
Sphere, 55, 6062, 132-133, 139,
141
Spherical symmetry, 139, 149,
194, 197-201
Spin
black holes, 245-254
connection, 486
gravitaiional wave solutions,
299
Spinor, 44
SK. See special relativity
Standard Maodel of panicle
physics, 44, 359
State, equation of, 33, See also
equation-of-siate
parameter
Static gravitating forces,
modeling, 286-287
Static metrie, 191192, 203-204,
244248
Stationary limit surface, 247
Stationary metric, 203-204, 238,
244-248
Stellar interior solutions, 229-235
Stokes's theorem, 3940, 453458
Stress-encray lensor See
energy-momentum Lensor
String frame, 184
String theory
AdS/CFT correspondence, 328,
421
and black hole entropy, 419420
gravitational wave clues,
299-300
holographic principle, 421
periurbation theery in, 143-144
as quantum theory of gravity,
171
Strong Energy Condition,
175-176, 462
Strong Equivalence Prnciple
(SEF), 50
Submanifolds
defined, 439-440
hypersurfaces; 443-452
Summation convention, 9
Sun, light deflection by, 291-292
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Supernovae, 319, 155-356
Surface-forming one-forms, 441
Surface gravity, 245-248, 271,
413
Surface term, converting by
Stokes’s theorem, 39-40,
164, 162
Symmetric tensors, 26
Symmetry. See also Killing
yeotors
antimatter and marter, 363
conserved guantities, 133-139
denoting with round/square
brackets, 27
diffecmorphism invariance,
434436
general relativity (GR) and,
133-134
isometries, 134-139, 436437
modeling. See conformal
diagrams
Riemann tensor components,
vanishing or refated by,
133
rotabing black holes, 261
spherical, 238
tensors, mampulating, 27
Synchronizing clocks, 7
Synchronous gauge, 284, 447

Tangent bundle, 16
Tangent vector, 15-16, 63, 64-65
Taylor exparnsion in curved
spacetime, 107
Temperature
of accelerating universe
(Gibbons—Hawking ), 371
of a black hele (Hawking), 376,
414
CMB, 357, 361
of expanding universe,
361-362
quantum chromodynamics
(D), 363
seen by accelerating observer
{Unruh effect), 411
Tensor product, 21
Tensors
defined, 21

densities
antisymmetrical product of
Kronecker deltas, 83-84
Levi-Civita svmbaol, 82-83
weight (Jacobian, power
raised 1), 83
differential forms
closed, 85
defined, 84
dimensionality of
cohomology spaces, 85-86
exact, 85
exterior denvative, 8485
Hodge duality, 86, 87
Levi-Civita, 86
wedge product, 84
dual vectors, 18-19, 6869
clectromagneric field strength,
24-25
inverse metric, 23-24, 71
Levi=Civita symbal, 24
Levi-Clivita tensor, 83-84
Lie derivative along vector field,
431433
Laoremz transformation, 22, 486
manifolds, 68-70
manipulating
antisymmetric, 26
comraction, 25
indices, raise and lower,
15-25
partial derivatives, 28
symmetric, 26, 27
trace, 28
metric
canonical form, 73
coordinates, 7T1-72, 74-74
defining, 8, 71
indefinite (Lorentzian or
pseudo-Riemannian), 73
positive (Euclidean or
Riemanman), 73
signature; 73
on IwWo vectors (inner
product), 23
parallel-transporting, 102103,
479481
transformation law, 22, 69,
428-430), 486

Terrestrial gravitational-wave
abservatory, 316-319
Test particles
geodesics, 108
eravitational wave solutions,
206298
Tetrad, 483, 487
Thermodynamics, black hole,
267-272, 416417
Time
conformal, 477
gravitational defay, 292
Hubble, 336-337
proper, 9,11
Timelike paths, 109
Timelike separated, Y
Time-translation invariance,
120
Tolman-~COppenheimer-Volkoff
equation, 233
Torsion tensor
connection involving, 128-129
defined, 98
one-form, 485889
Torus, 55, 131-132
Total energy of asymptotically flat
spacetime, 249-253
Trace
parts free of, capluring (Weyl
tensor}, 130
reversed version ol Ricei tensor,
130-131
tensors, mampulating, 28
Transformation. See also Lorentz
transformation
Bogolubov, 398-399, 408
conformal, 4674649
coordinate, 6667, 69, 429-430),
480
Fourer, 283234
gauge, 42, 274-278, 300-301,
493
generil coordinate, 486
holonomy of loop, 481
Poincard, 12-14
set of continuous, 56
Translations, 12, 134135, 324
Transport, See parallel transport
Transverse gauge; 283, 287
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Transverse fraceless gauge,
293204

Trapped surface, 242

Twin paradox, 10

Two-sphere, See Sphere,

Universe. See Cosmalogy
Unruh effect, 402412
Unruh vacuum, 414

Vacuum. See alse vacuum energy
Boulware vacuum, 414
Hadamard condition, 401
Hartle-Hawking vacuum, 414
inflation, 371-374
maximally symmetric

spacetimes, 323-329
quanium, 382, 390-391,
396401
Unruh effect, 407412
Unrah vacoum, 414

Vacuum energy
coincidence problem, 359
cosmological constant,

171-174, 359
cosmological effects, 335,
338-344, 355-356
enerey-momentum tensor, 35,
171-172
evolution, | 14120, 338, 341
expected value, 172-174, 190,
393-394
inflation, 368

measured, 174, 343, 355-356,
3158-361

quanium lield theory, 173,
393-3494, 400401

Yectar

collection that can be added and
multiplied by real
numbers, 16

commutalor, 67

componenis, 17

coordinate basis, H5-66

diffeomorphisms, 430

dimiension, 17

as directional derivatives, 63-64

divergence to value on boundary
(Stokes’s Theorem), 455

dual (one-forms), 18-20

four-dimensienal (four-vectors),
5

Lie derivative along fickd,
431433

Lorentz transformation, 17-18,
66

noncoordinate basis, 483486

potential, 42, 87

pushforward, 424425

tangent space, 6H3-63

transformation law under
changes in coordinates,
BT

Velooity

angular, rotating { Kerr) black

holes, 266
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conslant velocity veclor,
Lorgntz transformation, 12
cosmology, 345-346
of ight, 7-8
Wielbein, 483, 484-485, 487
Wolume, integrating manifolds,
BO-4()

Wave equation, 394

Weak Energy Condition,
174-176

Weak Equivalence Principle
(WEP), 458-30

Weak field limir, 153-154,
157-158, 274-286

WEC, See Weak Encrgy
Condition

Wedge product, 84

Weight, tensor densities, 83

WEP. See Weak Equivalence
Principle

Weyl tepsor, 130, 169=170

White dwarf, 235

White hole, 227

Whitney's embedding theorem,
60

Worldline, 4

X-rays, detecting black holes by,
235-236

dero-point gnergy, 173, 332, See
aise vacuum energy
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